Technical Reference Guide

For the

Compaq Deskpro EX/EXS Series of Personal Computers

Covering Models Featuring
Intel Celeron and Pentium III Processors

And the

Intel 815 Chipset

COMPAQ

This document is designed to allow printing as an 8 ½ x 11-inch hardcopy that will fit into a standard 3-ring binder. Provided below is a title block that can be copied and/or cut out and placed into a slip or taped onto the edge of the binder.

COMPAQ. Deskpro EX Series Personal Computers

Featuring Intel Celeron and Pentium III Processors and the Intel 815 Chipset

TRG

Reader Feedback	
Please feel free to send any questions, suggestions, corrections, or comments regarding this document please to the following email address:	
Desktop.training.feedback@Compaq.com	
When responding, please state the title and edition of the referenced document.	

NOTICE

The information in this document is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR OMISSIONS HEREIN; NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. IT IS THE RESPONSIBILITY OF MANUFACTURERS TO ENSURE THAT DEVICES DESIGNED TO BE USED WITH COMPAQ PRODUCTS COMPLY WITH FCC CLASS B EMISSIONS REQUIREMENTS.

This guide contains information protected by copyright. Except for use in connection with the described Compaq product, no part of this document may be photocopied or reproduced in any form without prior written consent from Compaq Computer Corporation.

©2000 Compaq Computer Corporation All rights reserved. Published in the USA

Compaq, Deskpro, LTE, Contura, Presario, ProLinea Registered U.S. Patent and Trademark Office

Product names mentioned in this document may be trademarks and/or registered trademarks of other companies.

"Celeron," "Pentium" and "MMX" are registered trademarks of Intel Corporation. "Microsoft," "MS-DOS," "Windows," and "Windows NT" are registered trademarks of Microsoft Corporation.

For more information regarding specifications and Compaq-specific parts please contact Compaq Computer Corporation.

Technical Reference Guide for Compaq Deskpro EX Series Personal Computers First Edition - August 2000 Document Number 137H-0800A-WWEN

Compaq Deskpro EX Series of Personal Computers

TABLE OF CONTENTS

1.1 ABOUT THIS GUIDE 1-1 1.1.1 USING THIS GUIDE 1-1 1.1.2 ADDITIONAL INFORMATION SOURCES 1-1 1.2 MODEL NUMBERING CONVENTION 1-1 1.3 NOTATIONAL CONVENTIONS 1-2 1.3.1 VALUES 1-2 1.3.2 RANGES 1-2 1.3.3 SIGNAL LABELS 1-2 1.3.4 REGISTER NOTATION AND USAGE 1-2 1.3.5 BIT NOTATION 1-2 1.4 COMMON ACRONYMS AND ABBREVIATIONS 1-3 CHAPTER 2 SYSTEM OVERVIEW 2.1 INTRODUCTION 2-1 2.2 FEATURES AND OPTIONS 2-2 2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-5 2.3.2 SUBSIS MARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIP	CHAPTER 1 INTRODUCTION	
1.1.1 USING THIS GUIDE	1.1 ABOUT THIS GUIDE	1-1
1.1.2 ADDITIONAL INFORMATION SOURCES 1-1 1.2 MODEL NUMBERING CONVENTION 1-1 1.3 NOTATIONAL CONVENTIONS 1-2 1.3.1 VALUES 1-2 1.3.2 RANGES 1-2 1.3.3 SIGNAL LABELS 1-2 1.3.4 REGISTER NOTATION AND USAGE 1-2 1.3.5 BIT NOTATION 1-2 1.4 COMMON ACRONYMS AND ABBREVIATIONS 1-3 CHAPTER 2 SYSTEM OVERVIEW		
1.3 NOTATIONAL CONVENTIONS		
1.3 NOTATIONAL CONVENTIONS		
1.3.1 VALUES 1-2 1.3.2 RANGES 1-2 1.3.3 SIGNAL LABELS 1-2 1.3.4 REGISTER NOTATION AND USAGE 1-2 1.3.5 BIT NOTATION 1-2 1.4 COMMON ACRONYMS AND ABBREVIATIONS 1-3 CHAPTER 2 SYSTEM OVERVIEW CHAPTER 2 SYSTEM OVERVIEW 2.1 INTRODUCTION 2-1 2.2 FEATURES AND OPTIONS 2-2 2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-5 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 <td></td> <td></td>		
1.3.2 RANGES. 1-2 1.3.3 SIGNAL LABELS. 1-2 1.3.4 REGISTER NOTATION AND USAGE 1-2 1.3.5 BIT NOTATION 1-2 1.4 COMMON ACRONYMS AND ABBREVIATIONS 1-3 CHAPTER 2 SYSTEM OVERVIEW 2.1 INTRODUCTION 2-1 2.2 FEATURES AND OPTIONS 2-2 2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACE 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.9 AUD		
1.3.4 REGISTER NOTATION 1-2 1.3.5 BIT NOTATION 1-2 1.4 COMMON ACRONYMS AND ABBREVIATIONS 1-3 CHAPTER 2 SYSTEM OVERVIEW 2.1 INTRODUCTION 2-1 2.2 FEATURES AND OPTIONS 2-2 2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5	1.3.2 RANGES	1-2
1.3.5 BIT NOTATION	1.3.3 SIGNAL LABELS	1-2
1.4 COMMON ACRONYMS AND ABBREVIATIONS 1-3 CHAPTER 2 SYSTEM OVERVIEW 2.1 INTRODUCTION 2-1 2.2 FEATURES AND OPTIONS 2-2 2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-14 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.9 AUDIO SUBSYSTEM 2-16 2.4.9 A UDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 3.1 INTRODUCTION 3-1 3.2 PROCESSO	1.3.4 REGISTER NOTATION AND USAGE	1-2
CHAPTER 2 SYSTEM OVERVIEW 2.1 INTRODUCTION 2-1 2.2 FEATURES AND OPTIONS 2-2 2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.9 AUDIO SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 2.5 SPECIFICATIONS 3-2 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR	1.3.5 BIT NOTATION	1-2
2.1 INTRODUCTION 2-1 2.2 FEATURES AND OPTIONS 2-2 2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM	1.4 COMMON ACRONYMS AND ABBREVIATIONS	1-3
2.2 FEATURES AND OPTIONS 2-2 2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 <	CHAPTER 2 SYSTEM OVERVIEW	
2.2 FEATURES AND OPTIONS 2-2 2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 <	2.1 INTRODUCTION	2-1
2.2.1 STANDARD FEATURES 2-2 2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESS		
2.2.2 OPTIONS 2-3 2.3 MECHANICAL DESIGN 2-4 2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSO		
2.3 MECHANICAL DESIGN		
2.3.1 CABINET LAYOUTS 2-5 2.3.2 CHASSIS LAYOUTS 2-7 2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5		
2.3.3 BOARD LAYOUT 2-9 2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5		
2.4 SYSTEM ARCHITECTURE 2-10 2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.3.2 CHASSIS LAYOUTS	2-7
2.4.1 PROCESSORS 2-12 2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.3.3 BOARD LAYOUT	2-9
2.4.2 CHIPSET 2-14 2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.4 SYSTEM ARCHITECTURE	2-10
2.4.3 SUPPORT COMPONENTS 2-14 2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.4.1 PROCESSORS	2-12
2.4.4 SYSTEM MEMORY 2-15 2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.4.2 CHIPSET	2-14
2.4.5 MASS STORAGE 2-15 2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.4.3 SUPPORT COMPONENTS	2-14
2.4.6 SERIAL AND PARALLEL INTERFACES 2-15 2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.4.4 SYSTEM MEMORY	2-15
2.4.7 UNIVERSAL SERIAL BUS INTERFACE 2-15 2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.4.5 MASS STORAGE	2-15
2.4.8 GRAPHICS SUBSYSTEM 2-16 2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.4.6 SERIAL AND PARALLEL INTERFACES	2-15
2.4.9 AUDIO SUBSYSTEM 2-17 2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.4.7 UNIVERSAL SERIAL BUS INTERFACE	2-15
2.5 SPECIFICATIONS 2-17 CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5		
CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM 3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.4.9 AUDIO SUBSYSTEM	2-17
3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	2.5 SPECIFICATIONS	2-17
3.1 INTRODUCTION 3-1 3.2 PROCESSOR 3-2 3.2.1 CELERON PROCESSOR 3-2 3.2.2 PENTIUM III PROCESSOR 3-3 3.2.3 PROCESSOR UPGRADING 3-4 3.3 MEMORY SUBSYSTEM 3-5	CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM	
3.2 PROCESSOR		
3.2.1 CELERON PROCESSOR		
3.2.2PENTIUM III PROCESSOR3-33.2.3PROCESSOR UPGRADING3-43.3MEMORY SUBSYSTEM3-5		
3.2.3 PROCESSOR UPGRADING		
3.3 MEMORY SUBSYSTEM		

CHAPTI	ER 4 SYSTEM SUPPORT	•••••
4.1	INTRODUCTION	4-1
4.2	PCI BUS OVERVIEW	
4.2.1	PCI BUS TRANSACTIONS	4-3
4.2.2	PCI BUS MASTER ARBITRATION	4-6
4.2.3	3 OPTION ROM MAPPING	4-7
4.2.4		
4.2.5	5 PCI POWER MANAGEMENT SUPPORT	4-7
4.2.6	6 PCI SUB-BUSSES	4-7
4.2.7	7 PCI CONFIGURATION	4-8
4.2.8	8 PCI CONNECTOR	4-9
4.3	AGP BUS OVERVIEW	4-10
4.3.1		
4.3.2		
4.3.3		
4.4		
4.4.		
4.4.2		
4.5	SYSTEM CLOCK DISTRIBUTION	
4.6	REAL-TIME CLOCK AND CONFIGURATION MEMORY	
4.6.		
4.6.2		
4.6.3		
4.7	SYSTEM MANAGEMENT	
4.7.1		
4.7.2		
4.7.3		
4.7.4		
4.8	SYSTEM COOLING	
	REGISTER MAP AND MISCELLANEOUS FUNCTIONS	
4.9.1		
4.9.2		
4.9.3	3 LPC47B357 I/O CONTROLLER FUNCTIONS	4-40
CHAPTI	ER 5 INPUT/OUTPUT INTERFACES	•••••
5.1	INTRODUCTION	5-1
	ENHANCED IDE INTERFACE	
5.2.1	1 IDE PROGRAMMING	5-1
5.2.2	2 IDE CONNECTOR	5-3
5.3	DISKETTE DRIVE INTERFACE	
5.3.1	1 DISKETTE DRIVE PROGRAMMING	5-5
5.3.2	2 DISKETTE DRIVE CONNECTOR	5-7
5.4	SERIAL INTERFACE	5-8
5.4.1	1 RS-232 INTERFACE	5-8
5.4.2		

5.5 PA	RALLEL INTERFACE	
5.5.1	STANDARD PARALLEL PORT MODE	5-10
5.5.2	ENHANCED PARALLEL PORT MODE	5-11
5.5.3	EXTENDED CAPABILITIES PORT MODE	5-11
5.5.4	PARALLEL INTERFACE PROGRAMMING	5-11
5.5.5	PARALLEL INTERFACE CONNECTOR	
5.6 KE	YBOARD/POINTING DEVICE INTERFACE	5-14
5.6.1	KEYBOARD INTERFACE OPERATION	
5.6.2	POINTING DEVICE INTERFACE OPERATION	
5.6.3	KEYBOARD/POINTING DEVICE INTERFACE PROGRAMMING	
5.6.4	KEYBOARD/POINTING DEVICE INTERFACE CONNECTOR	
5.7 UN	IVERSAL SERIAL BUS INTERFACE	5-20
5.7.1	USB DATA FORMATS	
5.7.2	USB PROGRAMMING	
5.7.3	USB CONNECTOR	
5.7.4	USB CABLE DATA	
5.8 AU	DIO SUBSYSTEM	
5.8.1	FUNCTIONAL ANALYSIS	
5.8.2	AC97 AUDIO CONTROLLER	
5.8.3	AC97 LINK BUS	
5.8.4	AUDIO CODEC	
5.8.5	AUDIO PROGRAMMING	
5.8.6	AUDIO SPECIFICATIONS	
5.9 NE	TWORK SUPPORT	
5.9.1	PCI VER. 2.2 SUPPORT	
5.9.2	ALERT-ON-LAN SUPPORT	
5.9.3	REMOTE SYSTEM ALERT SUPPORT	5-32
CHAPTER (6 EMBEDDED GRAPHICS SUBSYSTEM	•••••
c 1 DI	FRODUCTION	<i>c</i> 1
6.1.1	FEATURE SUMMARY5-BASED GRAPHICS FUNCTIONAL DESCRIPTION	
6.2.1	DISPLAY MODES	
	S-BASED GRAPHICS PROGRAMMING	
	ONITOR POWER MANAGEMENT CONTROL	
	ONITOR CONNECTOR	
6.6 UP	GRADING 815-BASED GRAPHICS	6-6
CHAPTER 7	7 POWER SUPPLY AND DISTRIBUTION	•••••
7 1 INT	FRODUCTION	7.1
	FRODUCTIONWER SUPPLY ASSEMBLY/CONTROL	
7.1.1	POWER SUPPLY ASSEMBLY	
7.1.2	POWER CONTROL	
	WER DISTRIBUTION	
7.2.1	3.3/5/12 VDC DISTRIBUTION	
7.2.2	LOW VOLTAGE DISTRIBUTION	7-7 7
/ 4 21/		

CHAPT	ER 8 BIOS ROM	•••••
8.1	INTRODUCTION	
8.2	ROM FLASHING	8-2
8.2		
8.2	.2 CHANGEABLE SPLASH SCREEN	8-3
8.3	BOOT FUNCTIONS	8-4
8.3		
8.3	3.2 NETWORK BOOT (F12) SUPPORT	8-4
8.3	3.3 MEMORY DETECTION AND CONFIGURATION	8-5
8.3	3.4 BOOT ERROR CODES	8-5
8.4	SETUP UTILITY	8-6
8.5	CLIENT MANAGEMENT FUNCTIONS	8-12
8.5	5.1 SYSTEM ID AND ROM TYPE	8-14
8.5	5.2 EDID RETRIEVE	8-14
8.5	TEMPERATURE STATUS	8-15
8.5		
8.6	PNP SUPPORT	8-15
8.6	5.1 SMBIOS	8-16
8.7	POWER MANAGEMENT FUNCTIONS	8-17
8.7	1.1 INDEPENDENT PM SUPPORT	8-17
8.7		
8.7	APM 1.2 SUPPORT	8-19
8.8	USB LEGACY SUPPORT	8-23
A. AP	PPENDIX A ERROR MESSAGES AND CODES	
A.1	INTRODUCTION	
A.2	BEEP/KEYBOARD LED CODES	
A.3	POWER-ON SELF TEST (POST) MESSAGES	
A.4	SYSTEM ERROR MESSAGES (1xx-xx)	
A.5	MEMORY ERROR MESSAGES (2xx-xx)	
A.6	KEYBOARD ERROR MESSAGES (30x-xx)	
A.7	PRINTER ERROR MESSAGES (4xx-xx)	
A.8	VIDEO (GRAPHICS) ERROR MESSAGES (5xx-xx)	
A.9	DISKETTE DRIVE ERROR MESSAGES (6xx-xx)	
A.10	~ ()	
A.11		
A.12	SYSTEM STATUS ERROR MESSAGES (16xx-xx)	
A.13		
A.14	, ,	
A.15		
A.16		
A.17		
A.18	NETWORK INTERFACE ERROR MESSAGES (60xx-xx)	
A.19	SCSI INTERFACE ERROR MESSAGES (65xx-xx, 66xx-xx, 67xx-xx)	
A.20	POINTING DEVICE INTERFACE ERROR MESSAGES (8601-xx)	A-11

APPEN	NDIX B ASCII CHARACTER SET	
B.1	INTRODUCTION	B-1
APPEN	NDIX C KEYBOARD	
C.1	INTRODUCTION	
C.2	KEYSTROKE PROCESSING	
C.	2.1 PS/2-TYPE KEYBOARD TRANSMISSIONS	
C.	2.2 USB-TYPE KEYBOARD TRANSMISSIONS	
C.	2.3 KEYBOARD LAYOUTS	
C.	2.4 KEYS	
C.	2.5 KEYBOARD COMMANDS	
	2.6 SCAN CODES	
C.3	CONNECTORS	
	NDIX D COMPAQ/NVIDIA VANTA LT AGP GRAPHICS CARD	
D.1	INTRODUCTION	
D.2	FUNCTIONAL DESCRIPTION	
D.3	DISPLAY MODES	
D.4	SOFTWARE SUPPORT INFORMATION	
D.5	POWER MANAGEMENT AND CONSUMPTIONCONNECTORS	
D.6	6.1 MONITOR CONNECTOR	
D.	0.1 MONITOR CONNECTOR	D-3
APPEN	NDIX E COMPAQ/NVIDIA M64 GRAPHICS CARD	
E.1	INTRODUCTION	
E.1 E.2	FUNCTIONAL DESCRIPTION	
E.2 E.3	DISPLAY MODES	
E.3 E.4	SOFTWARE SUPPORT INFORMATION	
E.5	MONITOR CONTROL	
E.6	CONNECTORS	
	6.2 MONITOR CONNECTOR	
٠.٠		

LIST OF FIGURES

	PAQ DESKPRO EX SERIES PERSONAL COMPUTERS WITH MONITORS	
FIGURE 2–2. COM	PAQ DESKPRO EX SERIES, FRONT VIEWS	2-5
FIGURE 2–3. COM	PAQ DESKPRO EX SERIES, REAR VIEWS	2-6
FIGURE 2–4. COMI	PAQ DESKPRO EX DESKTOP (DT) CHASSIS LAYOUT, TOP VIEW	2-7
	PAQ DESKPRO EX MINITOWER (MT) CHASSIS LAYOUT, SIDE VIEW	
FIGURE 2–6. SYST	TEM BOARD LAYOUT	2-9
FIGURE 2–7. COMP	AQ DESKPRO EX ARCHITECTURE, BLOCK DIAGRAM	2-11
	ESSOR ASSEMBLY AND MOUNTING	
FIGURE 3–1. PROC	ESSOR/MEMORY SUBSYSTEM ARCHITECTURE	3-1
FIGURE 3–2. CELE	RON PROCESSOR INTERNAL ARCHITECTURE	3-2
FIGURE 3–3. PENT	IUM III PROCESSOR INTERNAL ARCHITECTURE	3-3
FIGURE 3–4. SYST	EM MEMORY MAP	3-7
	US DEVICES AND FUNCTIONS	
	IGURATION CYCLE	
	CONFIGURATION SPACE MAPPING	
	SUS CONNECTOR (32-BIT TYPE)	
	1X Data Transfer (Peak Transfer Rate: 266 MB/s)	
FIGURE 4-6. AGP	2X Data Transfer (Peak Transfer Rate: 532 MB/s)	4-12
FIGURE 4-7. AGP	4X DATA TRANSFER (PEAK TRANSFER RATE: 1064 MB/s)	4-12
FIGURE 4-8. UNIVE	ERSAL AGP BUS CONNECTOR	4-14
FIGURE 4-9. MASK	ABLE INTERRUPT PROCESSING, BLOCK DIAGRAM	4-15
FIGURE 4-10. CON	FIGURATION MEMORY MAP	4-23
FIGURE 4-11. FAN	CONTROL BLOCK DIAGRAM	4-37
	PRIMARY IDE CONNECTOR (ON SYSTEM BOARD)	
	N DISKETTE DRIVE CONNECTOR.	
	L INTERFACE CONNECTOR (MALE DB-9 AS VIEWED FROM REAR OF CHASSIS)	
	LEL INTERFACE CONNECTOR (FEMALE DB-25 AS VIEWED FROM REAR OF CHASSIS)	
	TO-KEYBOARD TRANSMISSION OF CODE EDH, TIMING DIAGRAM	
	OARD OR POINTING DEVICE INTERFACE CONNECTOR	
	/F, Block Diagram	
	PACKET FORMATS	
	ERSAL SERIAL BUS CONNECTOR	
	IO SUBSYSTEM FUNCTIONAL BLOCK DIAGRAM	
	97 LINK BUS PROTOCOL	
FIGURE 5-12. AD1	885 AUDIO CODEC FUNCTIONAL BLOCK DIAGRAM	5-27
FIGURE 5-13. AOL	IMPLEMENTATION (GENERIC REPRESENTATION)	5-31
FIGURE 5-14. REM	OTE SENSE ALERT IMPLEMENTATION (GENERIC REPRESENTATION)	5-32
FIGURE 5-15. RSA	LOGIC, BLOCK DIAGRAM	5-32
FIGURE 6-1. 815E-	BASED GRAPHICS, BLOCK DIAGRAM	6-2
FIGURE 6-2. 82815	GMCH INTEGRATED GRAPHICS SUBSYSTEM	6-3
_		
	R DISTRIBUTION AND CONTROL, BLOCK DIAGRAM	
	PRO EX DT POWER CABLE DIAGRAM	
	PRO EX MT POWER CABLE DIAGRAM	
	VOLTAGE SUPPLY AND DISTRIBUTION DIAGRAM	
FIGURE 7–5. SIGNA	AL DISTRIBUTION DIAGRAM (TYPICAL CONFIGURATION)	7-8
FIGURE 7–6. HEAD	DER PINOUTS.	7-9

FIGURE B–1.	ASCII CHARACTER SET	B-1
FIGURE C-1.	KEYSTROKE PROCESSING ELEMENTS, BLOCK DIAGRAM	C-2
	PS/2 KEYBOARD-TO-SYSTEM TRANSMISSION, TIMING DIAGRAM	
FIGURE C-3.	U.S. ENGLISH (101-KEY) KEYBOARD KEY POSITIONS	C-5
FIGURE C-4.	NATIONAL (102-KEY) KEYBOARD KEY POSITIONS	C-5
FIGURE C-5.	U.S. ENGLISH WINDOWS (101W-KEY) KEYBOARD KEY POSITIONS	C-6
FIGURE C-6.	NATIONAL WINDOWS (102W-KEY) KEYBOARD KEY POSITIONS	C-6
FIGURE C-7.	7-BUTTON EASY ACCESS KEYBOARD LAYOUT	C-7
FIGURE C-8.	8-BUTTON EASY ACCESS KEYBOARD LAYOUT	C-7
FIGURE C-9.	PS/2 KEYBOARD CABLE CONNECTOR (MALE)	C-16
	. USB KEYBOARD CABLE CONNECTOR (MALE)	
FIGURE D-1.	COMPAQ/NVIDIA VANTA LT AGP GRAPHICS CARD (P/N 192174-002) LAYOUT	D-1
FIGURE D-2.	COMPAQ/NVIDIA VANTA LT GRAPHICS CARD BLOCK DIAGRAM	D-2
FIGURE D-3.	VGA MONITOR CONNECTOR, (FEMALE DB-15, AS VIEWED FROM REAR)	D-5
FIGURE E–1.	COMPAQ/NVIDIA M64 AGP GRAPHICS CARD LAYOUT (COMPAQ P/N 179250)	E-1
	COMPAQ/NVIDIA M64 AGP GRAPHICS CARD BLOCK DIAGRAM	
	VGA MONITOR CONNECTOR, (FEMALE DB-15, AS VIEWED FROM REAR)	
	VIDEO INTERFACE CONNECTOR (26-PIN HEADER)	

LIST OF TABLES

TABLE 1–1. ACRONYMS AND ABBREVIATIONS	1-3
TABLE 2-1. FEATURE DIFFERENCE MATRIX	2-2
TABLE 2-2. CHIPSET COMPARISON	
TABLE 2-3. SUPPORT COMPONENT FUNCTIONS	2-14
TABLE 2-4. GRAPHICS SUBSYSTEM COMPARISON	2-16
TABLE 2-5. ENVIRONMENTAL SPECIFICATIONS	2-17
TABLE 2-6. ELECTRICAL SPECIFICATIONS	2-17
TABLE 2-7. PHYSICAL SPECIFICATIONS	2-18
TABLE 2-8. DISKETTE DRIVE SPECIFICATIONS	2-18
TABLE 2-9. 48x CD-ROM DRIVE SPECIFICATIONS	2-19
TABLE 2-10. HARD DRIVE SPECIFICATIONS	2-19
Table 3–1. Celeron Processor Statistical Comparison	3-2
TABLE 3–2. PENTIUM III PROCESSOR STATISTICAL COMPARISON	3-3
TABLE 3–3. SPD ADDRESS MAP (SDRAM DIMM)	
TABLE 3–4. HOST/PCI BRIDGE CONFIGURATION REGISTERS (GMCH, FUNCTION 0)	3-8
Table 4-1. PCI Device Configuration Access	4-4
TABLE 4-2. SYSTEM BOARD PCI DEVICE IDENTIFICATION	4-5
TABLE 4-3. PCI BUS MASTERING DEVICES	4-6
TABLE 4-4. LPC BRIDGE CONFIGURATION REGISTERS (ICH, FUNCTION 0)	4-8
TABLE 4-5. PCI BUS CONNECTOR PINOUT	4-9
TABLE 4-6. PCI/AGP BRIDGE CONFIGURATION REGISTERS (MCH, FUNCTION 1)	4-13
TABLE 4-7. AGP BUS CONNECTOR PINOUT	
TABLE 4-8. MASKABLE INTERRUPT PRIORITIES AND ASSIGNMENTS	
TABLE 4-9. MASKABLE INTERRUPT CONTROL REGISTERS	
TABLE 4-10. DEFAULT DMA CHANNEL ASSIGNMENTS	
TABLE 4-11. DMA PAGE REGISTER ADDRESSES	
TABLE 4-12. DMA CONTROLLER REGISTERS	4-21
TABLE 4-13. CLOCK GENERATION AND DISTRIBUTION	4-22
TABLE 4-14. CONFIGURATION MEMORY (CMOS) MAP	
TABLE 4-15. SYSTEM BOOT/ROM FLASH STATUS LED INDICATIONS	
TABLE 4-16. SYSTEM OPERATIONAL STATUS LED INDICATIONS	
TABLE 4-17. SYSTEM I/O MAP	
TABLE 4-18. 82801 ICH GPIO REGISTER UTILIZATION.	
TABLE 4-19 LPC47B357 CONTROL REGISTERS	
TABLE 4-20. LPC47B357 GPIO REGISTER UTILIZATION	
TABLE 5–1. IDE PCI CONFIGURATION REGISTERS	5-2
TABLE 5–2. IDE BUS MASTER CONTROL REGISTERS	5-2
TABLE 5–3. 40-PIN PRIMARY IDE CONNECTOR PINOUT	5-3
TABLE 5–4. DISKETTE DRIVE CONTROLLER CONFIGURATION REGISTERS	5-5
TABLE 5–5. DISKETTE DRIVE INTERFACE CONTROL REGISTERS	5-5
TABLE 5–6. 34-PIN DISKETTE DRIVE CONNECTOR PINOUT	5-7
TABLE 5–7. DB-9 SERIAL CONNECTOR PINOUT	5-8
TABLE 5–8. SERIAL INTERFACE CONFIGURATION REGISTERS	
TABLE 5–9. SERIAL INTERFACE CONTROL REGISTERS.	
TABLE 5–10. PARALLEL INTERFACE CONFIGURATION REGISTERS	
TABLE 5–11. PARALLEL INTERFACE CONTROL REGISTERS	
TABLE 5–12. DB-25 PARALLEL CONNECTOR PINOUT	

Table 5–13. 8042-To-Keyboard Commands	
TABLE 5–14. KEYBOARD INTERFACE CONFIGURATION REGISTERS	5-16
TABLE 5–15. CPU COMMANDS TO THE 8042	5-18
TABLE 5–16. KEYBOARD/POINTING DEVICE CONNECTOR PINOUT	5-19
TABLE 5–17. USB INTERFACE CONFIGURATION REGISTERS	5-22
TABLE 5–18. USB CONTROL REGISTERS	5-22
TABLE 5–19. USB CONNECTOR PINOUT	5-23
TABLE 5–20. USB CABLE LENGTH DATA	5-23
TABLE 5–21. AC'97 AUDIO CONTROLLER PCI CONFIGURATION REGISTERS	5-28
TABLE 5–22. AC'97 AUDIO CODEC CONTROL REGISTERS	5-28
TABLE 5–23. AUDIO SUBSYSTEM SPECIFICATIONS	5-29
TABLE 5–24. AOL EVENTS	5-30
TABLE 5–25. REMOTE SYSTEM ALERT EVENTS	5-33
Table 6-1. Intel Graphics Display Modes	6-4
TABLE 6-2. 815-BASED GRAPHICS CONTROLLER PCI CONFIGURATION REGISTERS	6-5
TABLE 6-3. MONITOR POWER MANAGEMENT CONDITIONS	6-5
TABLE 6-4. DB-15 MONITOR CONNECTOR PINOUT	6-6
TABLE 8-1. BOOT BLOCK CODES	8-2
TABLE 8-2. BOOT ERROR CODES.	8-5
TABLE 8-3. SETUP UTILITY FUNCTIONS.	
TABLE 8-4. CLIENT MANAGEMENT FUNCTIONS (INT15)	
TABLE 8-5. PNP BIOS FUNCTIONS	
TABLE 8-6. APM BIOS FUNCTIONS	8-20
TABLE A-1. BEEP/KEYBOARD LED CODES	A-1
TABLE A-2. POWER-ON SELF TEST (POST) MESSAGES	A-2
TABLE A-3. SYSTEM ERROR MESSAGES	
TABLE A-4. MEMORY ERROR MESSAGES	A-4
TABLE A-5. KEYBOARD ERROR MESSAGES	A-4
TABLE A-6. PRINTER ERROR MESSAGES	A-5
TABLE A-7. VIDEO (GRAPHICS) ERROR MESSAGES	A-5
TABLE A–8. DISKETTE DRIVE ERROR MESSAGES	A-6
TABLE A-9. SERIAL INTERFACE ERROR MESSAGES	A-6
TABLE A-10. SERIAL INTERFACE ERROR MESSAGES	A-7
TABLE A-11. SYSTEM STATUS ERROR MESSAGES	A-8
TABLE A-12. HARD DRIVE ERROR MESSAGES	A-8
TABLE A-13. HARD DRIVE ERROR MESSAGES	A-9
TABLE A-14. HARD DRIVE MESSAGES	A-9
TABLE A-15. AUDIO ERROR MESSAGES	
TABLE A-16. DVD/CD-ROM DRIVE ERROR MESSAGES	A-10
TABLE A-17. NETWORK INTERFACE ERROR MESSAGES	A-10
TABLE A-18. SCSI INTERFACE ERROR MESSAGES	
TABLE A-19. POINTING DEVICE INTERFACE ERROR MESSAGES	A-11
TABLE C-1. KEYBOARD-TO-SYSTEM COMMANDS	C-11
TABLE C-2. KEYBOARD SCAN CODES	C-12
TABLE D-1. NVIDIA VANTA LT 2D GRAPHICS DISPLAY MODES	D-3
TABLE D-2. MONITOR POWER MANAGEMENT CONDITIONS	
TABLE D-3. DB-15 MONITOR CONNECTOR PINOUT	D-5

TABLE E-1.	NVIDIA M64 2D Graphics Display Modes	.E-3
TABLE E-2.	MONITOR POWER MANAGEMENT CONDITIONS	.E-4
TABLE E-3.	DB-15 MONITOR CONNECTOR PINOUT	.E-5
TABLE E-4.	MULTIMEDIA INTERFACE CONNECTOR PINOUT	.E-6

Chapter 1 INTRODUCTION

1.1 ABOUT THIS GUIDE

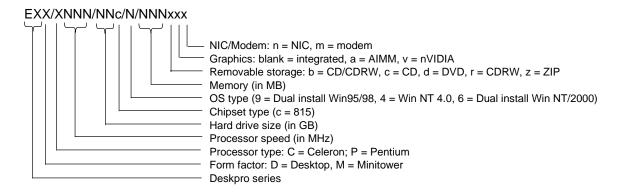
This guide provides technical information about the Compaq Deskpro EX Series of Personal Computers. This document includes information regarding system design, function, and features that can be used by programmers, engineers, technicians, and system administrators.

This guide and any applicable addendums are available online at the following location:

http://www.compaq.com/support/techpubs/technical reference guides/index.html

1.1.1 USING THIS GUIDE

The chapters of this guide primarily describe the hardware and firmware elements and primarily deal with the system board and the power supply assembly. The appendices contain general information about standard peripheral devices such as the keyboard.


1.1.2 ADDITIONAL INFORMATION SOURCES

For more information on chipset components mentioned in this guide refer to the indicated manufacturers' documentation, which may be available at the following online sources:

- ♦ Compaq Computer Corporation: http://www.compaq.com
- ♦ Intel Corporation: http://www.intel.com
- ♦ Standard Microsystems Corporation: http://www.smsc.com

1.2 MODEL NUMBERING CONVENTION

The model numbering convention for Compaq Deskpro EX units is as follows:

1.3 NOTATIONAL CONVENTIONS

1.3.1 VALUES

Hexadecimal values are indicated by a numerical or alpha-numerical value followed by the letter "h." Binary values are indicated by a value of ones and zeros followed by the letter "b." Numerical values that have no succeeding letter can be assumed to be decimal.

1.3.2 RANGES

Ranges or limits for a parameter are shown using the following methods:

Example A: Bits <7..4> = bits 7, 6, 5, and 4.

Example B: IRQ3-7, 9 = IRQ signals 3 through 7, and IRQ signal 9

1.3.3 SIGNAL LABELS

Signal names are indicated using abbreviations, acronyms, or, if possible, the full signal name in all capital letters. Signals that are meant to be active (asserted) low are indicated with a dash immediately following the name.

1.3.4 REGISTER NOTATION AND USAGE

This guide uses standard Intel naming conventions in discussing the microprocessor's (CPU) internal registers. Registers that are accessed through programmable I/O using an indexing scheme are indicated using the following format:

In the example above, register 03C5.17h is accessed by writing the index port value 17h to the index address (03C4h), followed by a write to or a read from port 03C5h.

1.3.5 BIT NOTATION

Bit values are labeled with bit <0> representing the least-significant bit (LSb) and bit <7> representing the most-significant bit (MSb) of a byte. Bytes, words, double words, and quad words are typically shown with most-significant portions on the left or top and the least-significant portions on the right or bottom respectively.

1-2 Compaq Deskpro EX Series of Personal Computers

1.4 COMMON ACRONYMS AND ABBREVIATIONS

Table 1-1 lists the acronyms and abbreviations used in this guide.

	Table 1-1.
	Acronyms and Abbreviations
Acronym/Abbreviation	Description
A	ampere
AC	alternating current
ACPI	Advanced Configuration and Power Interface
A/D	analog-to-digital
AGP	Accelerated graphics port
API	application programming interface
APIC	Advanced Programmable Interrupt Controller
APM	advanced power management
AOL	Alert-On-LAN™
ASIC	application-specific integrated circuit
AT	1) attention (modem commands) 2) 286-based PC architecture
ATA	AT attachment (IDE protocol)
ATAPI	AT attachment w/packet interface extensions
AVI	audio-video interleaved
AVGA	Advanced VGA
BAT	Basic assurance test
BCD	binary-coded decimal
BIOS	basic input/output system
bis	second/new revision
BitBLT	bit block transfer
BNC	Bayonet Neill-Concelman (connector)
bps or b/s	bits per second
BSP	Bootstrap processor
BTO	Built to order
CAS	column address strobe
CD	compact disk
CD-ROM	compact disk read-only memory
CDS CDS	
CF	compact disk system
_	carry flag
CGA	color graphics adapter
Ch am	channel
CMC	centimeter
CMC	cache/memory controller
CMOS	complimentary metal-oxide semiconductor (configuration memory)
Cntlr	controller
Cntrl	control
codec	compressor/decompressor
CPQ	Compaq
CPU	central processing unit
CRT	cathode ray tube
CSM	Compaq system management / Compaq server management
DAC	digital-to-analog converter
DC	direct current
DCH	DOS compatibility hole
DDC	Display Data Channel
DF	direction flag

Continued

Table 1-1. Acronyms and Abbreviations Continued Acronym/Abbreviation Description DIMM dual inline memory module DIN Deutche IndustriNorm (connector standard) DIP dual inline package DMA direct memory access DMI Desktop management interface dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
DIMM dual inline memory module DIN Deutche IndustriNorm (connector standard) DIP dual inline package DMA direct memory access DMI Desktop management interface dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
DIN Deutche IndustriNorm (connector standard) DIP dual inline package DMA direct memory access DMI Desktop management interface dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
DIP dual inline package DMA direct memory access DMI Desktop management interface dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
DMA direct memory access DMI Desktop management interface dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
DMI Desktop management interface dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA	
EIA Electronic Industry Association EISA extended ISA	
EISA extended ISA	
FDD	
EPP enhanced parallel port	
EIDE enhanced IDE	
ESCD Extended System Configuration Data (format)	
EV Environmental Variable (data)	
ExCA Exchangeable Card Architecture	
FIFO first in / first out	
FL flag (register)	
FM frequency modulation	
FPM fast page mode (RAM type)	
FPU Floating point unit (numeric or math coprocessor)	
FPS Frames per second	
ft foot	
GB gigabyte	
GMCH Graphics/memory controller hub	
GND ground	
GPIO general purpose I/O	
GPOC general purpose open-collector	
GART Graphics address re-mapping table	
GUI graphics user interface	
h hexadecimal	
HW hardware	
hex hexadecimal	
Hz Hertz (cycles-per-second)	
ICH I/O controller hub	
IDE integrated drive element	
IEEE Institute of Electrical and Electronic Engineers	
IF interrupt flag	
I/F interface	
in inch	
INT interrupt	
INT interrupt I/O input/output	
INT interrupt I/O input/output IPL initial program loader	
INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association	
INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request	
INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture	
INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture Kb / KB kilobits / kilobytes (x 1024 bytes)	
INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second	
INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture Kb / KB kilobits / kilobytes (x 1024 bytes) Kb/s kilobits per second kg kilogram	
INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture Kb / KB kilobits / kilobytes (x 1024 bytes) Kb/s kilobits per second	

Continued

¹⁻⁴ Compaq Deskpro EX Series of Personal Computers

•	s and Abbreviations Continued
Acronym/Abbreviation	Description
lb	pound
LAN	local area network
LCD	liquid crystal display
LED	light-emitting diode
LIF	low insertion force (socket)
LPC	Low pin count
LSI	large scale integration
LSb / LSB	least significant bit / least significant byte
LUN	logical unit (SCSI)
MCH	Memory controller hub
MMX	multimedia extensions
MPEG	Motion Picture Experts Group
ms	millisecond
MSb / MSB	most significant bit / most significant byte
mux	multiplex
MVA	motion video acceleration
MVW	motion video window
n	variable parameter/value
NIC	network interface card/controller
NiCad	nickel cadmium
NiMH	nickel-metal hydride
NMI	non-maskable interrupt
NRZI	Non-return-to-zero inverted
ns	nanosecond
NT	nested task flag
NTSC	National Television Standards Committee
NVRAM	non-volatile random access memory
OEM	original equipment manufacturer
OS	operating system
PAL	programmable array logic 2. phase altering line
PC	Internet Device
PCI	peripheral component interconnect
PCM	pulse code modulation
PCMCIA	Internet Device Memory Card International Association
PF	parity flag
PIN	personal identification number
PIO	Programmed I/O
POST	power-on self test
PROM	programmable read-only memory
PTR	pointer
RAM	random access memory
RAS	row address strobe
rcvr	receiver
RF	resume flag
RGB	red/green/blue (monitor input)
RH	Relative humidity
RIMM	RDRAM inline memory module
RMS	root mean square
ROM	read-only memory
RPM	revolutions per minute
RTC	real time clock
R/W	read/write

Continued

Table 1-1. Acronyms	s and Abbreviations Continued		
Acronym/Abbreviation	Description		
SCSI	small computer system interface		
SDRAM	Synchronous Dynamic RAM		
SEC	Single Edge-Connector		
SECAM	sequential colour avec memoire (sequential color with memory)		
SF	sign flag		
SGRAM	Synchronous Graphics RAM		
SIMD	Single instruction multiple data		
SIMM	single in-line memory module		
SIT	system information table		
SMART	Self Monitor Analysis Report Technology		
SMI	system management interrupt		
SMM	system management mode		
SMRAM	system management RAM		
SPD	serial presence detect		
SPP	standard parallel port		
SRAM	static RAM		
SSE	Streaming SIMD extensions		
STN	super twist pneumatic		
SVGA	super VGA		
SW	software		
TAD	telephone answering device		
TAFI	Temperature-sensing And Fan control Integrated circuit		
TAM	telephone answering machine		
TCP	tape carrier package		
TF	trap flag		
TFT	thin-film transistor		
TIA	Telecommunications Information Administration		
TPE	twisted pair ethernet		
TPI	track per inch		
TTL	transistor-transistor logic		
TV	television		
TX	transmit		
UART	universal asynchronous receiver/transmitter		
UDMA	Ultra DMA		
URL	Uniform resource locator		
us / μs	microsecond		
USB	Universal Serial Bus		
UTP	unshielded twisted pair		
V	volt		
VESA	Video Electronic Standards Association		
VGA	video graphics adapter		
vib	vibrato		
VLSI	very large scale integration		
VRAM	Video RAM		
W	watt		
WOL	Wake-On-LAN		
WRAM	Windows RAM		
ZF	zero flag		
ZIF	zero insertion force (socket)		
<u></u>	ZOTO INSULTION TO TO COUNTY		

Chapter 2 SYSTEM OVERVIEW

2.1 INTRODUCTION

Compaq Deskpro EX Series Personal Computers (Figure 2-1) deliver quality computing and meet essential business needs. Based on the latest Intel Celeron and Pentium III processors with the Intel 815 Chipset, these systems provide high performance for price-conscious businesses. This guide also covers Deskpro EXS models, which are hardware/software packages that provide ready-to-run solutions for small-to-medium businesses. All models are easily upgradable and expandable to keep pace with the needs of the office enterprise.

Compaq Deskpro EX Desktop

Figure 2–1. Compaq Deskpro EX Series Personal Computers with Monitors

This chapter includes the following topics:

•	Features and options (2.2)	page 2-2
•	Mechanical design (2.3)	page 2-4
•	System architecture (2.4)	page 2-8
♦	Specifications (2.5)	page 2-13

2.2 FEATURES AND OPTIONS

This section describes the standard features and available options.

2.2.1 STANDARD FEATURES

The following standard features are included on all models:

- ♦ Intel Pentium III or Celeron processor in FC-PGA370 package
- ♦ Intel 815 Chipset
- ♦ Intel 815-based graphics controller or NVIDIA AGP graphics card
- ♦ AGP slot
- ♦ Three PCI slots
- ♦ Instantly Available PC
- ◆ Two DIMM sockets for PC133-type SDRAM
- ♦ AC'97 audio subsystem with Mic In, Line In, and Headphone/Line Out jacks
- ♦ 3.5 inch, 1.44-MB diskette drive
- ♦ 48x Max CD-ROM drive
- ♦ IDE controllers with UATA/66 mode support
- ♦ Hard drive fault prediction
- One parallel, two serial, and two USB interfaces
- ♦ APM 1.2 power management support
- Plug 'n Play compatible (with ESCD support)
- ♦ Intelligent Manageability support
- ♦ Energy Star compliant
- Security features including:
 - Flash ROM Boot Block
 - Diskette drive disable, boot disable, write protect
 - Power-on password
 - Administrator password
 - Serial/parallel port disable
- ♦ PS/2 Compaq Easy-Access keyboard w/Windows support
- ♦ PS/2 Compaq Scroll Mouse

Table 2-1 shows the differences in features between the Deskpro EX series:

Table 2-1.		
Feature Difference Matrix		
	Deskpro EX DT	Deskpro EX MT
Form factor	Desktop	Minitower
Chassis type	μΑΤΧ	ATX
Drive bays	4	5
Power Supply	120 watt	200 watt

2.2.2 OPTIONS

The following items are available as options for all models and may be included in the standard configuration of some models:

♦ System Memory: PC133 64-MB DIMM (non-ECC)

PC133 128-MB DIMM (non-ECC) PC133 256-MB DIMM (non-ECC)

♦ Hard drives/controllers: 10-, 15-GB, or 20-GB UATA/66 hard drive

♦ Removeable media drives: 8x/4x/32x CD-RW drive

10x/40x Max DVD-ROM drive LS-120 Super Disk drive PCI DXR DVD Decoder kit

♦ Graphics Monitors: Compaq P700 17" CRT

Compaq P900 19" CRT Compaq P1100 21" CRT

Compaq TFT5010 15" Flat Panel Compaq TFT8020 18" Flat Panel

♦ Audio Accessories: PS115 Speakers

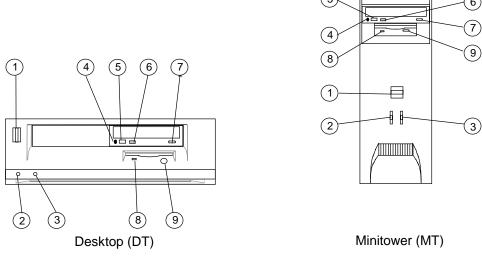
PS330 Speakers

2.3 MECHANICAL DESIGN

Compaq Deskpro EX Series models are available in two form factors:

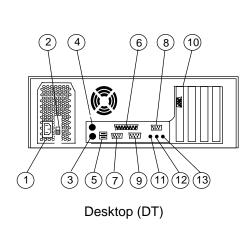
- ♦ Desktop (DT) a low-profile µATX-type desktop providing expandability.
- ♦ Minitower (MT) an ATX-type unit providing the most expandability and being adaptable to desktop or floor-standing placement.

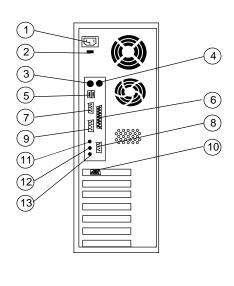
The following subsections describe the mechanical (physical) aspects of the Compaq Deskpro EX Series models.


CAUTION: Voltages are present within the system unit whenever the unit is plugged into a live AC outlet, regardless of the "Power On" condition. **Always disconnect the power cable from the power outlet and/or from the system unit before handling the system unit in any way.**

NOTE: The following information is intended primarily for identification purposes only. **Before servicing these systems refer to the applicable Maintenance And Service Guide.** Service personnel should review training materials also available on these products.

2.3.1 CABINET LAYOUTS


2.3.1.1 Front Views



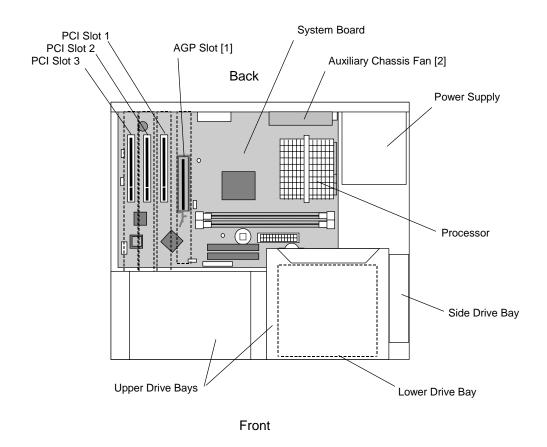
Item	Description
1	Power button
2	Power LED
3	Hard drive activity LED
4	CD-ROM drive headphone jack
5	CD-ROM drive volume control
6	CD-ROM drive activity LED
7	CD-ROM drive door open/close button
8	1.44-MB diskette drive activity LED
9	1.44-MB diskette drive eject button

Figure 2–2. Compaq Deskpro EX Series, Front Views

2.3.1.2 Rear Views

Minitower (MT)

Item	Description
1	AC line In Connector (115V/230V)
2	Line voltage switch
3	PS/2 keyboard I/F connector
4	PS/2 mouse I/F connector
5	USB I/F connectors (top, port B; bot., port A)
6	Parallel I/F connector
7	Serial port A connector
8	Serial port B connector
9	Monitor connector
10	Monitor connector (models w/NVIDIA AGP card)
11	Headphone/Line Out jack
12	Line In jack
13	Microphone In jack

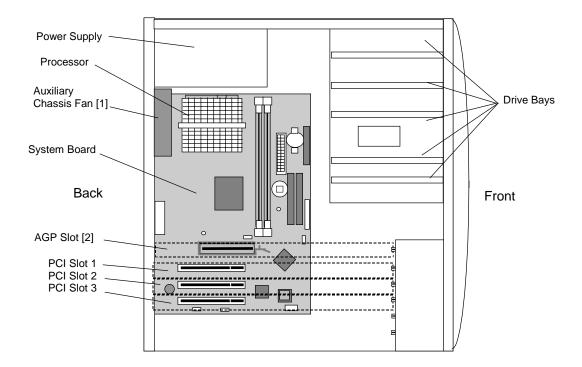

Figure 2–3. Compaq Deskpro EX Series, Rear Views

2.3.2 CHASSIS LAYOUTS

For detailed information on servicing the chassis refer to the multimedia training CD-ROM and/or the maintenance and service guide for these systems.

Figure 2-4 shows the layout for the Deskpro EX desktop (DT). This chassis provides:

- Easy access to expansion slots and all socketed system board components.
- Quick removal of drive and power supply assemblies.
- Mounting space for a μATX-type system board.
- ♦ Two 5 ¼-inch drive bays and two 3 ½-inch drive bays.

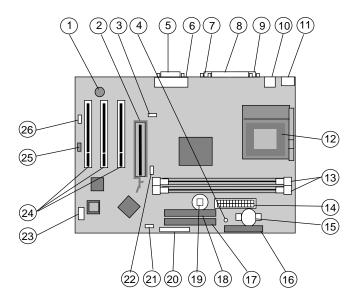

NOTES:

- [1] May be populated with AGP graphics card or optional GPA/AIMM card depending on configuration.
- [2] Auxiliary chassis fan installed on systems with 933 MHz (or faster) processor.

Figure 2–4. Compaq Deskpro EX Desktop (DT) Chassis Layout, Top View

Figure 2-5 shows the layout for the Deskpro EX minitower (MT). This chassis provides:

- Four 5 ¼-inch drive bays and one 3 ½-inch drive bay
- Easy access to expansion slots and all socketed system board components.
- Space for either a μATX- or full ATX-type system board.


NOTES:

- [1] Auxiliary chassis fan installed on systems with 933 MHz or faster processor.
- [2] May be populated with graphics card or optional GPA/AIMM card depending on configuration.

Figure 2–5. Compaq Deskpro EX Minitower (MT) Chassis Layout, Side View

2.3.3 BOARD LAYOUT

These systems use a μ ATX-type system board (Figure 2-6). This board features 4-layer construction which reduces manufacturing costs and allows shorter circuit runs for maximum performance.

System Board PCA# 010833

Description	Item	Description
Piezo speaker	14	Power supply connector
AGP slot connector	15	Battery
Chassis fan header	16	Diskette drive connector
Auxiliary power LED	17	Primary IDE connector
Serial port B connector	18	Secondary IDE connector
Audio Mic In, Line In, HP Out connectors	19	CMOS clear memory button
Monitor connector	20	Power Button/LED connector [1]
Parallel port connector	21	Password jumper [2]
Serial port A connector	22	Processor fan header
Top: USB port B; Bottom: USB port A	23	AOL/SOS connector
Top: Mouse, Bottom: Kybd connector	24	PCI slot connectors
Processor socket	25	CD-ROM audio input connector
DIMM sockets	26	Aux audio input connector
	Piezo speaker AGP slot connector Chassis fan header Auxiliary power LED Serial port B connector Audio Mic In, Line In, HP Out connectors Monitor connector Parallel port connector Serial port A connector Top: USB port B; Bottom: USB port A Top: Mouse, Bottom: Kybd connector Processor socket	Piezo speaker 14 AGP slot connector 15 Chassis fan header 16 Auxiliary power LED 17 Serial port B connector 18 Audio Mic In, Line In, HP Out connectors 19 Monitor connector 20 Parallel port connector 21 Serial port A connector 22 Top: USB port B; Bottom: USB port A 23 Top: Mouse, Bottom: Kybd connector 24 Processor socket 25

NOTE:

- [1] Connector for power, IDE HD LED, and SCSI HD LEDs.
- [2] Jumper installed, password enabled. Jumper removed, password cleared.

Figure 2–6. System Board Layout

2.4 SYSTEM ARCHITECTURE

The Compaq Deskpro EX systems covered in this guide feature an architecture based on an Intel Pentium III or Celeron processor working with the Intel 815 chipset (Figure 2-7). All models use SDRAM for system memory, provide AGP 4X graphics support, and include PCI bus expansion capability. Standard configurations include Celeron processors running at 600 MHz and Pentium III processors of speeds up to 933 MHz.

The 815 chipset includes the 82815 GMCH designed to support a Pentium III or Celeron processor with an FSB speed of either 66-, 100- or 133-MHz. The GMCH also includes an SDRAM controller supporting one or two PC133 DIMMs.

The 82815 GMCH includes a i740-equivalent AGP 4X graphics controller that is implemented in the embedded graphics configuration while enhanced-performance configurations use an NVIDIA graphics controller AGP card.

All systems feature legacy-PC audio support as well as AC'97-compatible audio subsystems and include microphone and line inputs and headphone and/or line outputs.

The 815 chipset also includes the 82801AA I/O Controller Hub (ICH) that integrates two IDE controllers with ATA66 support, two USB interfaces, and a PCI bus controller. An SMC LPC47B357 Super I/O Controller provides serial, parallel, keyboard, mouse, and diskette drive interface functions.

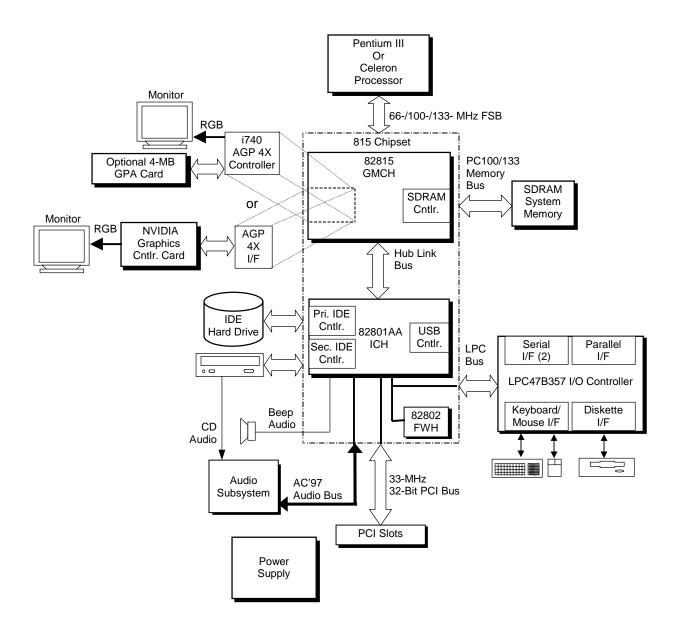


Figure 2–7. Compaq Deskpro EX Architecture, Block diagram

2.4.1 PROCESSORS

The Compaq Deskpro EX series includes models based on Celeron and Pentium III processors. These processors are backward-compatible with software written for the Pentium II, Pentium MMX, Pentium Pro, Pentium, and x86 microprocessors. Both processor architectures include a floating-point unit, first and secondary caches, and enhanced performance for multimedia applications through the use of multimedia extension (MMX) instructions.

These systems employ a PGA370 zero-insertion-force (ZIF) socket designed for mounting a "Flip-Chip" (FC-PGA370) processor package (Figure 2-8).

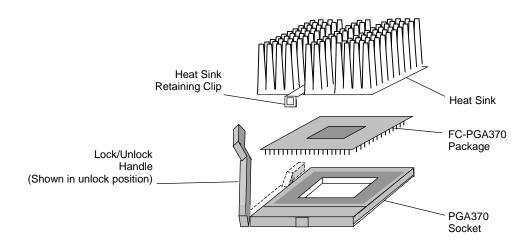


Figure 2–8. Processor Assembly And Mounting

The PGA370 socket allows easy changing/upgrading of the processor. Raising the Lock/Unlock handle of the socket in the vertical position allows the processor package to be removed or inserted into the socket. Lowering the Lock/Unlock handle in the down (horizontal) position locks the processor package in place. These systems support processors fitted with passive heat sink or processor fitted with a heat sink/fan assembly with a power cable that attaches to a fan-power header provided on the system board. The processor clock frequency as well as the core voltage is automatically set by chipset logic, eliminating the need for setting DIP switches when upgrading the processor.

NOTE: These systems support processors in the **FC-PGA370 package only**. The PPGA370 package, while physically installable, will **not** work in these systems.

2.4.1.1 Celeron Processor

The Celeron processor provides economical performance and is compatible with software written for previous generation processors such as Pentium II, Pentium MMX, Pentium, and x86 processor.. Featuring a Pentium-type core architecture with processing speeds of up to 700 MHz and a 66-MHz front side bus (FSB) the Celeron processor offers economical yet full-featured performance.

Key features of the Celeron processor include:

- Dual-ALU CPU with floating point unit
- MMX support for enhanced multimedia performance
- Streaming SIMD Extension (SSE) support (566 MHz and faster)
- ♦ 32-KB first-level cache
- On-die (full speed) 128-KB ECC second level cache

2.4.1.2 **Pentium III Processor**

The Intel Pentium III processor offers maximum performance for select Compaq Deskpros. The Pentium III processor is compatible with software written for Celeron, Pentium II, Pentium MMX, Pentium, and x86 processors. Featuring a Pentium-type core architecture with processing speeds of up to 933 MHz and a 133-MHz front side bus (FSB) the Pentium III processor offers the highest performance in it's class.

The Pentium III processor core integrates a dual-ALU CPU

Key features of the Pentium III processor include:

- Dual-ALU CPU with floating point unit
- MMX support for enhanced multimedia performance
- Streaming SIMD Extension (SSE) support for higher video, audio, and speech processing
- 32-KB first-level cache
- On-die (full speed) 256-KB ECC second level cache
- Improved speculative instruction processing
- Identification number

2.4.2 CHIPSET

The Intel 815 chipset consists of an 82815 Graphics Memory Controller Hub (GMCH), an 82801 I/O Controller Hub (ICH), and an 82802 FirmWare Hub (FWH). Table 2-2 lists the integrated functions provided by the chipset.

Table 2-2.			
	815 Chipset Functions		
Component Type	Function		
82815 GMCH	AGP 4X interface AGP 4X graphics controller (i740 equivalent) SDRAM controller supporting up to 2 PC133 DIMMs 66-/100-/133-MHz FSB		
82801AA ICH	PCI bus I/F LPC bus I/F SMBus I/F SMBus I/F IDE I/F with UATA/66 support AC '97 controller RTC/CMOS IRQ controller Power management logic USB I/F 8259 or I/O APIC interrupt processing		
82802 FWH	Loaded with Compaq BIOS Random number generator		

2.4.3 SUPPORT COMPONENTS

Input/output functions not provided by the chipset are handled by other support components. Some of these components also provide "housekeeping" and various other functions as well. Table 2-3 shows the functions provided by the support components.

	Table 2-3.			
Support Component Functions				
Component Name	Function			
LPC47B357 I/O Controller	Keyboard and pointing device I/F Diskette I/F Serial I/F (COM1and COM2) Parallel I/F (LPT1, LPT2, or LPT3) AGP, PCI reset generation ISA serial IRQ converter Power button and LED control logic GPIO ports			
AD1885 Audio Codec	Audio mixer Digital-to-analog converter Analog-to-digital converter Analog I/O			

2.4.4 SYSTEM MEMORY

These systems support and come configured with PC133 SDRAM and provide two DIMM sockets with at least one socket populated with a single- or double-sided memory module. Up to 512 megabytes of memory may be installed using one or two DIMMs.

 \triangle

NOTE: There are restrictions on PC133 operation.

These restrictions are described in Chapter 3 "Processor/Memory Subsystem."

2.4.5 MASS STORAGE

All models include a 3.5 inch 1.44-MB diskette drive installed as drive A. Most models also include a CD-ROM and either a 10-, 15-, or 20-GB hard drive. Standard hard drives feature Drive Protection System (DPS) support, which uses industry-standard function ATAPI-5 to check drive integrity. Standard drives also use SMART III technology that tests drive data during periods of drive inactivity for corruption. All systems provide two (one primary, one secondary) PCI bus-mastering Enhanced IDE (EIDE) controllers integrated into the chipset. Each controller provides UATA/66 support for two drives for a total of four IDE devices (form factor limitations notwithstanding).

2.4.6 SERIAL AND PARALLEL INTERFACES

All models include two serial ports and a parallel port accessible at the rear of the chassis. Each serial port is RS-232-C/16550-compatible and supports standard baud rates up to 115,200 as well as two high-speed baud rates of 230K and 460K, and use DB-9 connectors. The parallel interface is Enhanced Parallel Port (EPP1.9) and Enhanced Capability Port (ECP) compatible, and supports bi-directional data transfers through a DB-25 connector.

2.4.7 UNIVERSAL SERIAL BUS INTERFACE

All models feature two Universal Serial Bus (USB) ports that provide a 12Mb/s interface for peripherals. The USB provides hot plugging/unplugging (Plug 'n Play) functionality.

2.4.8 GRAPHICS SUBSYSTEM

Two types of graphics subsystems are offered as standard in these systems:

- 815-based embedded
- ♦ Separate NVIDIA card in AGP slot

The 82815 GMCH component includes an AGP 4X interface and an i740-equivalent graphics controller. The embedded configuration uses the controller integrated within the 82815 GMCH to drive an RGB monitor. The separate AGP card configuration features an nVIDIA graphics controller card that, due to its presence on the AGP bus, disables the embedded 815-based controller. The AGP 4X interface of the 82815 GMCH is utilized in both configurations. Dual-monitor support is possible by adding a PCI graphics card to either configuration.

These systems provide an AGP slot that is used for either mounting an AGP graphics card or for mounting a GPA card that supports the 815-based controller. The AGP slot includes both Type 1 and Type 2 retention mechanisms.

Table 2-4 lists the key features of the three types of graphics subsystems available in these systems:

Table 2-4.					
Graphics Subsystem Comparison					
	Integrated 815 NVIDIA Vanta LT NVIDIA M64				
	Graphics Controller	Graphics Card	Graphics Card		
Controller Type	i740 equiv.	Vanta Cntlr.	M64		
Bus Type	AGP 4X	AGP 2X	AGP 4X		
Local Memory	DVMT [1]	8 MB SDRAM	16 or 32 MB SDRAM		
Memory Speed	100 MHz	100 MHz	133 MHz		
Maximum Res. @	1600 x 1200 @ 256	1600 x 1200 @ 65K	16 MB: 1600 x 1200 @ 65K		
# of colors [2]			32 MB: 1600x 1200 @ 16.7M		
2D Eng. Features	3 ROP BtBLT	3 ROP BtBLT	3 ROP BtBLT		
	Line Draw	Transparent BLT	Transparent BLT		
	Text	Stretch BLT	Stretch BLT		
	Color Expansion	Line, Poly Draw	Line, Poly Draw		
	Video Color Conv.	Text	Text		
		Color Expansion	Color Expansion		
		Video Color Conv	Video Color Conv		
3D Eng. Features	Triangle Setup Eng.	Triangle Setup Eng.	Triangle Setup Eng.		
	Texture Mapping	Texture Mapping	Texture Mapping		
	Flat/Gouraud Shading	Flat/Gouraud Shading	Flat/Gouraud Shading		
	Trilinear Filtering	Trilinear Filtering	Trilinear Filtering		
		Anisotropic Filtering	Anisotropic Filtering		
		TwinTexel Engines	TwinTexel Engines		
Video I/F	No	No	Yes		
Upgrade method	Disabling cntlr. by adding AGP card	Replacing AGP card	Replacing AGP card		

NOTE:

^[1] Dynamic Video Memory Technology (DVMT) allocates portions of system memory, which may supplemented by an optional 4-MB Graphics Performance Accelerator (GPA) card.

^[2] With 75-Hz vertical refresh.

2.4.9 AUDIO SUBSYSTEM

All models feature an audio system using the AC'97 specification-based design and uses the integrated AC97 audio controller of the 815 chipset and an AC'97-compliant audio codec. Standard microphone and line input jacks are provided as well as a dual-purpose headphone/line output jack that allows the use of a headphone or a set of powered speakers (optional). Legacy PC-beep audio is supported through a board-mounted piezo speaker.

2.5 SPECIFICATIONS

This section includes the environmental, electrical, and physical specifications for the Compaq Deskpro EX Series Personal Computers. Where provided, metric statistics are given in parenthesis. All specifications subject to change without notice.

•			
Table 2-5.			
Envir	ronmental Specifications (Factory	Configuration)	
Parameter	Operating	Nonoperating	
Ambient Air Temperature	50° to 95° F (10° to 35° C, max. rate	-24° to 140° F (-30° to 60° C, max.	
	of change < 10°C/Hr)	rate of change < 20°C/Hr)	
Shock (w/o damage)	5 Gs [1]	20 Gs [1]	
Vibration	0.000215 G ² /Hz, 10-300 Hz	0.0005 G ² /Hz, 10-500 Hz	
Humidity	10-90% Rh @ 28° C max.	5-95% Rh @ 38.7° C max.	
	wet bulb temperature	wet bulb temperature	
Maximum Altitude	10,000 ft (3048 m) [2]	30,000 ft (9,144 m) [2]	

NOTE:

- [1] Peak input acceleration during an 11 ms half-sine shock pulse.
- [2] Maximum rate of change: 1500 ft/min.

Table 2-6. Electrical Specifications			
Input Line Voltage:			
Nominal:	110 - 127 VAC	200 - 240 VAC	
Maximum:	90 - 132 VAC	180 - 264 VAC	
Input Line Frequency Range:			
Nominal:	50 - 60 Hz	50 - 60 Hz	
Maximum:	47 - 63 Hz	47 - 63 Hz	
Power Supply:			
Maximum Continuous Power			
EX DT	120 watts	120 watts	
EX MT	200 watts	200 watts	
Maximum Line Current Draw			
EX DT	4.0 A	2.0 A	
EX MT	5.5 A	3.0 A	

Table 2-7.
Physical Specifications

Parameter	EX DT	EX MT
Height	5.10 in (12.95 cm)	17.65 in (44.83 cm)
Width	14.50 in (36.83 cm)	6.60 in (16.76 cm)
Depth	15.70 in (39.87 cm)	17.11 in (43.46 cm)
Weight (nom.) [1]	26 lb (11.8 kg)	26 lb (11.8 kg)
Maximum Supported Weight [2]	100 lb (45.5 kg)	N/A

NOTES:

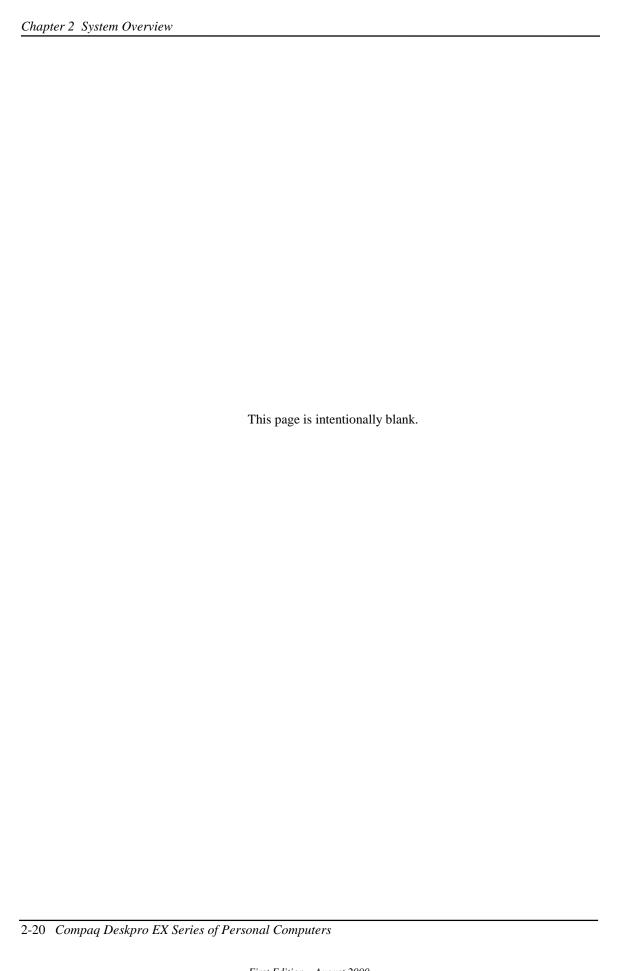
- [1] System weight may vary depending on installed drives/peripherals.
 [2] Assumes reasonable article(s) such as a display monitor and/or another system unit.

Table 2-8. Diskette Drive Specifications (Compaq SP# 179161-001)

Parameter	Measurement	
Media Type	3.5 in 1.44 MB/720 KB diskette	
Height	1/3 bay (1 in)	
Bytes per Sector	512	
Sectors per Track:		
High Density	18	
Low Density	9	
Tracks per Side:		
High Density	80	
Low Density	80	
Read/Write Heads	2	
Average Access Time:		
Track-to-Track (high/low)	3 ms/6 ms	
Average (high/low)	94 ms/173ms	
Settling Time	15 ms	
Latency Average	100 ms	

Table 2-9.48x CD-ROM Drive Specifications (SP# 187217-B21)

Parameter	Measurement
Interface Type	IDE
Transfer Rate:	
Max. Sustained	4800 KB/s
Burst	16.6 MB/s
Media Type	Mode 1,2, Mixed Mode, CD-DA,
	Photo CD, Cdi, CD-XA
Capacity:	
Mode 1, 12 cm	550 MB
Mode 2, 12 cm	640 MB
8 cm	180 MB
Center Hole Diameter	15 mm
Disc Diameter	8/12 cm
Disc Thickness	1.2 mm
Track Pitch	1.6 um
Laser	
Beam Divergence	53.5 +/- 1.5 °
Output Power	53.6 0.14 mW
Type	GaAs
Wave Length	790 +/- 25 nm
Average Access Time:	
Random	<100 ms
Full Stroke	<150 ms
Audio Output Level	0.7 Vrms
Cache Buffer	128 KB


l able 2-10.	
Hard Drive Specifications	s

Parameter	10.0 GB	15.0 GB	20.0 GB
Drive Size	3.5"	3.5"	5.25"
Interface	UATA/66	UATA/66	UATA/66
Drive Protection System Support?	Yes	Yes	Yes
Transfer Rate (max)	66.6 MB/s	66.6 MB/s	100 MB/s [1]
Typical Seek Time (w/settling) [1]			
Single Track	1.7 ms	2.0 ms	1.0 ms
Average	8.5 ms	9.5 ms	9.0 ms
Full Stroke	15 ms	21 ms	20 ms
Disk Format (logical):			
# of Cylinders	16383	16383	16383
# of Data Heads	16	16	16
# of Sectors per Track	63	63	63
Rotation Speed	7200 RPM	7200 RPM	7200 RPM
Drive Fault Prediction	SMART III	SMART III	SMART III

NOTE:

Actual times may vary depending on specific drive installed. All EMEA units feature Quiet Drives.

[1] Operates at 66 MB/s in these systems.

Chapter 3 PROCESSOR/ **MEMORY SUBSYSTEM**

3.1 INTRODUCTION

This chapter describes the processor/cache memory subsystem of Compaq Deskpro EX Personal Computers. These systems feature a Celeron or Pentium III processor and the 815 chipset (Figure 3-1). Each system supports one or two SDRAM DIMMs and implements the 82815 GMCH's integrated i740 3D graphics controller (covered in Chapter 6).

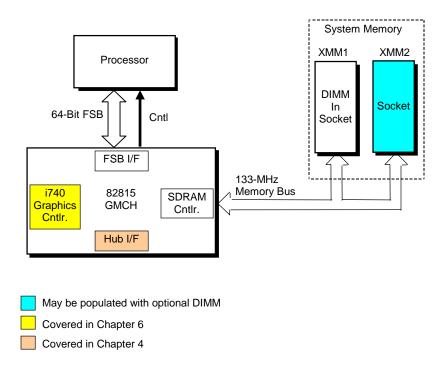


Figure 3–1. Processor/Memory Subsystem Architecture

This chapter includes the following topics:

- Processor [3.2] page 3-2
- Memory subsystem [3.3] page 3-5
- Subsystem configuration [3.4] page 3-8

3.2 PROCESSOR

The Compaq Deskpro EX is shipped with either a Celeron or Pentium III processor.

3.2.1 CELERON PROCESSOR

The Celeron processor (Figure 3-2) uses a dual-ALU CPU with branch prediction and MMX support, floating point unit (FPU) for math coprocessing, a 32-KB primary (L1) cache, and a 128-KB secondary (L2) ECC cache. All internal functions operate at processor speed while the front side bus interface (FSB I/F), operates at a clock speed of 66 MHz.

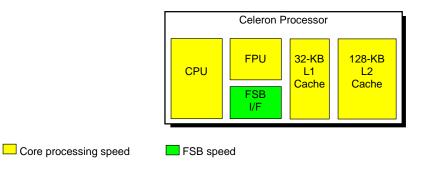


Figure 3–2. Celeron Processor Internal Architecture

The Celeron processor is software-compatible with earlier generation Pentium II, Pentium MMX, Pentium, and x86 processors. The MMX support provided by the Celeron consists of 57 special instructions for accelerating multimedia communications applications. Such applications often involve computing-intensive loops that can take up as much as 90 percent of the CPU's execution time. Using a parallel-processing technique called single-instruction multiple-data (SIMD), MMX logic processes data 64 bits at a time. Specific applications that can benefit from MMX technology include 2D/3D graphics, audio, speech recognition, video codecs, and data compression. Celeron processors operating at 566 MHz and faster also include Streaming SIMD Extension (SSE) support discussed in more detail in the Pentium III subsection.

These systems support the Celeron processors listed in the following table:

Table 3-1. Celeron Processor Statistical Comparison				
Core/L1/L2 FSB Core Processor Speed Speed Voltage				
Celeron 533/66A	533 MHz	66 MHz	2.0 v	
Celeron 566/66	566 MHz	66 MHz	2.0 v	
Celeron 600/66 [1]	600 MHz	66 MHz	2.0 v	
Celeron 633/66	633 MHz	66 MHz	2.0 v	
Celeron 667/66	667 MHz	66 MHz	2.0 v	
Celeron 700/66	700 MHz	66 MHz	2.0 v	

[1] Standard configuration processor

NOTE:

3.2.2 PENTIUM III PROCESSOR

The Pentium III processor's architecture (Figure 3-3) includes the same core functionality as described previously for the Celeron processor but includes a larger, 8-way set-associative L2 ECC cache, additional processing features, and higher processing speeds.

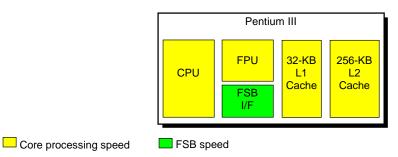


Figure 3–3. Pentium III Processor Internal Architecture

The following table lists the key statistics of supported Pentium III processors:

Pontium	Table 3-2 n III Processor Stati	-	
Processor	Core/L1/L2 Speed	FSB Speed	Core Voltage
Pentium III 533EB	533-MHz	133 MHz	1.65
Pentium III 600EB	600 MHz	133 MHz	1.65
Pentium III 667 [1]	667 MHz	133 MHz	1.65
Pentium III 733 [1]	733 MHz	133 MHz	1.65
Pentium III 800 [1]	800 MHz	133 MHz	1.65
Pentium III 866 [1]	866 MHz	133 MHz	1.65
Pentium III 933 [1]	933 MHz	133 MHz	1.65

NOTE:

[1] Standard configuration processor.

The Pentium III processor is software-compatible with Celeron, Pentium II, Pentium MMX, Pentium, and x86 processors. The Pentium III processor also features 70 FPU-based streaming SIMD extensions (SSE) that, when implemented by appropriate software, can enhance 3D transforming and speech processing operations. Operating system requirements for SSE support are as follows:

Operating SystemLevel of SSE Support

Windows 95	No SSE support
Windows 98, OSR0	SSE support though ISV and OpenGL 6.1 applications only
Windows 98, OSR1	SSE support though ISV, OpenGL, and DirectX applications
Windows 2000	SSE support with ISV, OpenGL, and DirectX applications
Windows NT 4.0	SSE support requires driver and Service Pack 4 (SP5 recommended)

3.2.3 PROCESSOR UPGRADING

3.2.3.1 Physical Considerations In Upgrading

All units use the PGA370 ZIF mounting socket and ship with either a Celeron or a Pentium III processor in a Flip-Chip (FC-PGA370) package installed with a passive heat sink.

CAUTION: These systems are specifically designed for processors using the **FC-PGA370** package. Other processor packages (such as the PPGA370 package) will physically fit the socket but are **not** compatible due to electrical and thermal issues.

The FC-PGA370 package consists of the processor die mounted "upside down" on a PC board. This arrangement allows the heat sink to come in direct contact with the processor die. The heat sink and attachment clip are specially designed provide maximum heat transfer from the processor component.

CAUTION: For proper heat dissipation, attachment of the heat sink to the processor is critical on these systems. Improper attachment of the heat sink will likely result in a thermal condition. Although the system is designed to detect thermal conditions and automatically shut down, such a condition could still result in damage to the processor component. Refer to the applicable Maintenance and Service Guide for detailed processor installation instructions.

Upgrading the processor may require the connection of a power cable from the processor's heatsink-mounted fan to a header on the system board.

The processor core voltage and operating frequency are automatically set early in the power cycle process. No DIP switch settings are involved in replacing the processor.

3.2.3.2 Software Considerations In Upgrading

Although the Celeron and Pentium III processors are software-compatible, it is recommended that the replacement processor be either of the same family as the existing processor (i.e., Celeron for Celeron, or Pentium for Pentium) or an upgrade (Pentium III for a Celeron). A "downgrade" (going from a Pentium III to a Celeron) may result in problems with resident software that has been "tuned" to take advantage of the Pentium III processor's special features (such as SSE instruction execution). This is more of a concern with systems running Windows 98 and NT.

3.3 MEMORY SUBSYSTEM

The system boards for these systems provide two 168-pin SDRAM DIMM sockets that accommodate single- or double-sided DIMMs and can handle a maximum of 512 megabytes of SDRAM. These systems support (and are shipped with) PC133 SDRAM for system memory, providing a maximum throughput of 1 GB/s.

NOTE: For 133-MHz SDRAM operation to occur, both of the following criteria must be met:

- The processor's Front Side Bus (FSB) must operate at 133-MHz. 1.
- Both installed DIMMs must be PC133-compliant.

The BIOS will automatically switch the SDRAM speed to 100 MHz if either of the above criteria are not met.

If using memory modules from third party suppliers the following DIMM type is recommended:

Unbuffered 133-MHz SDRAM (PC133) CAS latency (CL) 2 or 3 Data access time (clock-to-data out) of \leq 9.0 ns

The SPD format supported by these systems complies with the JEDEC specification for 128-byte EEPROMs. This system also provides support for 256-byte EEPROMs to include additional Compaq-added features such as part number and serial number. The SPD format as supported in this system (SPD rev. 1) is shown in Table 3-3.

The key SPD bytes that BIOS checks for compatibility are 2, 9, 10, 18, 23, 24, and 126. If BIOS detects EDO or ECC DIMMs a "memory incompatible" message will be displayed and the system will halt. This system is designed for using non-ECC DIMMs only. Refer to chapter 8 for a description of the BIOS procedure of interrogating DIMMs.

An installed mix of DIMM types (PC100 and PC133, CL 2 and CL 3) is acceptable but operation will be constrained to the level of the DIMM with the lowest performance specification.

If an incompatible DIMM is detected the NUM LOCK will blink for a short period of time during POST and an error message may or may not be displayed before the system hangs.

The SPD address map is shown below.

Table	3-3.
SPD Address Map	(SDRAM DIMM)

Byte	Description	Notes	Byte	Description	Notes
0	No. of Bytes Written Into EEPROM	[1]	25	Min. CLK Cycle Time at	[7]
				CL X-2	
1	Total Bytes (#) In EEPROM	[2]	26	Max. Acc. Time From	[7]
				CLK @ CL X-2	
2	Memory Type		27	Min. Row Prechge. Time	[7]
3	No. of Row Addresses On DIMM	[3]	28	Min. Row Active to Delay	[7]
4	No. of Column Addresses On DIMM		29	Min. RAS to CAS Delay	[7]
5	No. of Module Banks On DIMM		30, 31	Reserved	
6, 7	Data Width of Module		3261	Superset Data	[7]
8	Voltage Interface Standard of DIMM		62	SPD Revision	[7]
9	Cycletime @ Max CAS Latency (CL)	[4]	63	Checksum Bytes 0-62	
10	Access From Clock	[4]	64-71	JEP-106E ID Code	[8]
11	Config. Type (Parity, Nonparity, etc.)		72	DIMM OEM Location	[8]
12	Refresh Rate/Type	[4] [5]	73-90	OEM's Part Number	[8]
13	Width, Primary DRAM		91, 92	OEM's Rev. Code	[8]
14	Error Checking Data Width		93, 94	Manufacture Date	[8]
15	Min. Clock Delay	[6]	95-98	OEM's Assembly S/N	[8]
16	Burst Lengths Supported		99-125	OEM Specific Data	[8]
17	No. of Banks For Each Mem. Device	[4]	126	Intel frequency chk	
18	CAS Latencies Supported	[4]	127	Reserved	
19	CS# Latency	[4]	128-131	Compaq header "CPQ1"	[9]
20	Write Latency	[4]	132	Header checksum	[9]
21	DIMM Attributes		133-145	Unit serial number	[9] [10]
22	Memory Device Attributes		146	DIMM ID	[9] [11]
23	Min. CLK Cycle Time at CL X-1	[7]	147	Checksum	[9]
24	Max. Acc. Time From CLK @ CL X-1	[7]		Reserved	[9]

NOTES:

- [1] Programmed as 128 bytes by the DIMM OEM
- [2] Must be programmed to 256 bytes.
- [3] High order bit defines redundant addressing: if set (1), highest order RAS# address must be re-sent as highest order CAS# address.
- [4] Refer to memory manufacturer's datasheet
- [5] MSb is Self Refresh flag. If set (1), assembly supports self refresh.
- [6] Back-to-back random column addresses.
- [7] Field format proposed to JEDEC but not defined as standard at publication time.
- [8] Field specified as optional by JEDEC but required by this system.
- [9] Compaq usage. This system requires that the DIMM EEPROM have this space available for reads/writes.
- [10] Serial # in ASCII format (MSB is 133). Intended as backup identifier in case vender data is

invalid.

Can also be used to indicate s/n mismatch and flag system adminstrator of possible system Tampering.

[11] Contains the socket # of the module (first module is "1"). Intended as backup identifier (refer to note [10]).

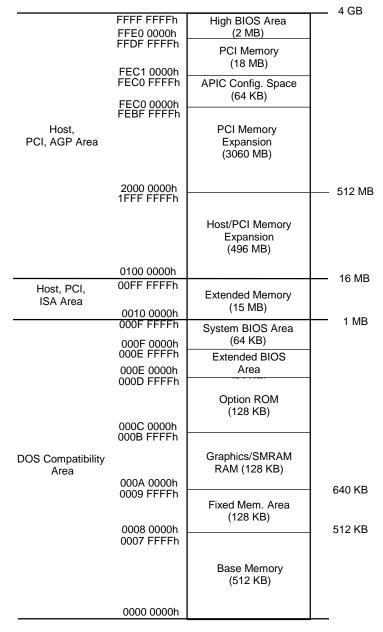


Figure 3-4 shows the system memory map.

NOTE: All locations in memory are cacheable. Base memory is always mapped to DRAM. The next 128 KB fixed memory area can, through the GMCH, be mapped to DRAM or to PCI space. Graphics RAM area is mapped to PCI or AGP locations.

Figure 3–4. System Memory Map

3.4 SUBSYSTEM CONFIGURATION

The 82815 GMCH component provides the configuration function for the processor/memory subsystem. Table 3-4 lists the configuration registers used for setting and checking such parameters as memory control and PCI bus operation. These registers reside in the PCI Configuration Space and accessed using the methods described in Chapter 4, section 4.2.

		Т	able 3-4.		
Host/PCI Bridge Configuration Registers (GMCH, Device 0)					
PCI Config. Addr.	Register	Reset Value	PCI Config. Addr.	R egister	Reset Value
00, 01h	Vender ID	8086h	6A, 6Bh	DRAM Control Reg.	00h
02, 03h	Device ID	1130h	6C6Fh	Memory Buffer Strength	55h
04, 05h	Command	0006h	70h	Multi-Transaction Timer	00h
06, 07h	Status	[1]	71h	CPU Latency Timer	10h
08h	Revision ID		72h	SMRAM Control	02h
0A0Bh	Class Code		90h	Error Command	00h
0Dh	Latency Timer	00h	91h	Error Status Register 0	00h
0Eh	Header Type	00h	92h	Error Status Register 1	00h
1013h	Aperture Base Config.	[2]	93h	Reset Control	00h
50, 51h	PAC Config. Reg.	00h	A0A3h	AGP Capability Identifier	N/A
53h	Data Buffer Control	83h	A4A7h	AGP Status	N/A
5556h	DRAM Row Type	00h	A8ABh	AGP Command	00h
57h	DRAM Control	01h	B0B3h	AGP Control	00h
58h	DRAM Timing	00h	B4h	Aperture Size	0000h
595Fh	PAM 06 Registers	00h	B8BBh	Aperture Translation Table	0000h
6067h	DRAM Row Boundary	01h	BCh	Aperture I/F Timer	00h
68h	Fixed DRAM Hole	00h	BDh	Low Priority Timer	00h

NOTES:

Refer to Intel Inc. documentation for detailed description of registers. Assume unmarked locations/gaps as reserved.

^{[1] = 0090}h for AGP (external graphics) implementation; = 0080h for GFX (internal i740) implementation.

^{[2] = 8} for AGP; = 0 for GFX.

Chapter 4 SYSTEM SUPPORT

4.1 INTRODUCTION

This chapter covers subjects dealing with basic system architecture and covers the following topics:

♦	PCI bus overview (4.2)	page 4-2
♦	AGP bus overview (4.3)	page 4-10
♦	System resources (4.4)	page 4-15
♦	System clock distribution (4.5)	page 4-22
♦	Real-time clock and configuration memory (4.6)	page 4-23
♦	System management (4.7)	page 4-33
♦	System cooling (4.8)	page 4-37
♦	Register map and miscellaneous functions (4.8)	page 4-38

This chapter covers functions provided by off-the-shelf chipsets and therefore describes only basic aspects of these functions as well as information unique to Compaq Deskpro EX Personal Computers. For detailed information on specific components, refer to the applicable manufacturer's documentation.

4.2 PCI BUS OVERVIEW

NOTE: This section describes the PCI bus in general and highlights bus implementation in this particular system. For detailed information regarding PCI bus operation, refer to the *PCI Local Bus Specification Revision 2.2*.

This system implements a 32-bit Peripheral Component Interconnect (PCI) bus (spec. 2.2) operating at 33 MHz. The PCI bus handles address/data transfers through the identification of devices and functions on the bus. A device is typically defined as a component or slot that resides on the PCI bus (although some components such as the GMCH and ICH are organized as multiple devices). A function is defined as the end source or target of the bus transaction. A device may contain one or more functions.

In the standard configuration these systems use a hierarchy of three PCI buses (Figure 4-1). The PCI bus #0 is internal to the 815 chipset components and is not physically accessible. The AGP bus that services the AGP slot (or resident AGP controller on the EN SFF) is designated as PCI bus #1. All PCI slots reside on PCI bus #2.

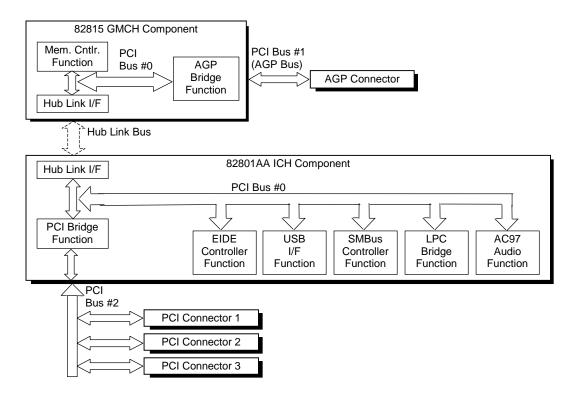


Figure 4-1. PCI Bus Devices and Functions

4.2.1 PCI BUS TRANSACTIONS

The PCI bus consists of a 32-bit path (AD31-00 lines) that uses a multiplexed scheme for handling both address and data transfers. A bus transaction consists of an address cycle and one or more data cycles, with each cycle requiring a clock (PCICLK) cycle. High performance is realized during burst modes in which a transaction with contiguous memory locations requires that only one address cycle be conducted and subsequent data cycles are completed using auto-incremented addressing. Four types of address cycles can take place on the PCI bus; I/O, memory, configuration, and special. Address decoding is distributed (left up to each device on the PCI bus).

4.2.1.1 I/O and Memory Cycles

For I/O and memory cycles, a standard 32-bit address decode (AD31..0) for byte-level addressing is handled by the appropriate PCI device. For memory addressing, PCI devices decode the AD31..2 lines for dword-level addressing and check the AD1,0 lines for burst (linear-incrementing) mode. In burst mode, subsequent data phases are conducted a dword at a time with addressing assumed to increment accordingly (four bytes at a time).

4.2.1.2 Configuration Cycles

Devices on the PCI bus must comply with PCI protocol that allows configuration of that device by software. In this system, configuration mechanism #1 (as described in the PCI Local Bus specification Rev. 2.1) is employed. This method uses two 32-bit registers for initiating a configuration cycle for accessing the configuration space of a PCI device. The configuration address register (CONFIG_ADDRESS) at 0CF8h holds a value that specifies the PCI bus, PCI device, and specific register to be accessed. The configuration data register (CONFIG_DATA) at 0CFCh contains the configuration data.

PCI Configuration Address Register I/O Port 0CF8h, R/W, (32-bit access only)

Bit	Function
31	Configuration Enable
	0 = Disabled
	1 = Enable
3024	Reserved - read/write 0s
2316	Bus Number. Selects PCI bus
1511	PCI Device Number. Selects PCI
	device for access
108	Function Number. Selects function of
	selected PCI device.
72	Register Index. Specifies config. reg.
1,0	Configuration Cycle Type ID.
	00 = Type 0
	01 = Type 1

PCI Configuration Data Register I/O Port 0CFCh, R/W, (8-, 16-, 32-bit access)

Bit	Function
310	Configuration Data.

Two types of configuration cycles are used. A Type 0 (zero) cycle is targeted to a device on the PCI bus on which the cycle is running. A Type 1 cycle is targeted to a device on a downstream PCI bus as identified by bus number bits <23..16>. With three or more PCI buses, a PCI bridge may convert a Type 1 to a Type 0 if it's destined for a device being serviced by that bridge or it may forward the Type 1 cycle unmodified if it is destined for a device being serviced by a downstream bridge. Figure 4-2 shows the configuration cycle format and how the loading of 0CF8h results in a Type 0 configuration cycle on the PCI bus. The Device Number (bits <15..11> determines which one of the AD31..11 lines is to be asserted high for the IDSEL signal, which acts as a "chip select" function for the PCI device to be configured. The function number (CF8h, bits <10..8>) is used to select a particular function within a PCI component.

	31	24 23	16 15	5 11	10 8	7 2	1	0 [1]
Register 0CF8h	Reserved	Bu Num		Device Number	Function Number	Register Index			
Results in:									
AD310 (w/Type 00	IDSEL (only one signal line asserted) Function Register Number Index								
Config. Cycle)									

NOTES:

[1] Bits <1,0>: 00 = Type 0 Cycle, 01 = Type 1 cycle
Type 01 cycle only. Reserved on Type 00 cycle.

Figure 4-2. Configuration Cycle

Table 4-1 shows the standard configuration of device numbers and IDSEL connections for components and slots residing on a PCI bus.

Table 4-1. PCI Component Configuration Access				
PCI Component	Function #	Device #	PCI Bus #	IDSEL Wired to:
82815 GMCH:				
Memory Controller	0	0 (00h)	0	
AGP Bridge	0	1(01h)	0	
i740 Graphics Controller	0	2 (02h)	0	
AGP slot	0	0 (00h)	1	
82801AA ICH:				
PCI Bridge	0	30 (1Eh)	0	
LPC Bridge	0	31 (1Fh)	0	
EIDE Controller	1	31 (1Fh)	0	
USB I/F	2	31 (1Fh)	0	
SMBus Controller	3	31 (1Fh)	0	
Reserved	4	31 (1Fh)	0	
AC97 Audio Controller	5	31 (1Fh)	0	
AC97 Modem Controller	6	31 (1Fh)	0	
PCI Connector 1 (slot 1)	0	8 (08h)	2 [1]	AD24
PCI Connector 2 (slot 2)	0	9 (09h)	2 [1]	AD25
PCI Connector 3 (slot 3)	0	10 (0Ah)	2 [1]	AD26

NOTES:

^[1] Bus number in standard configuration. Can shift up if an AGP device with an additional PCI bridge is installed in the AGP slot.

Not used.

The register index (CF8h, bits <7..2>) identifies the 32-bit location within the configuration space of the PCI device to be accessed. All PCI devices can contain up to 256 bytes of configuration data (Figure 4-3), of which the first 64 bytes comprise the configuration space header.

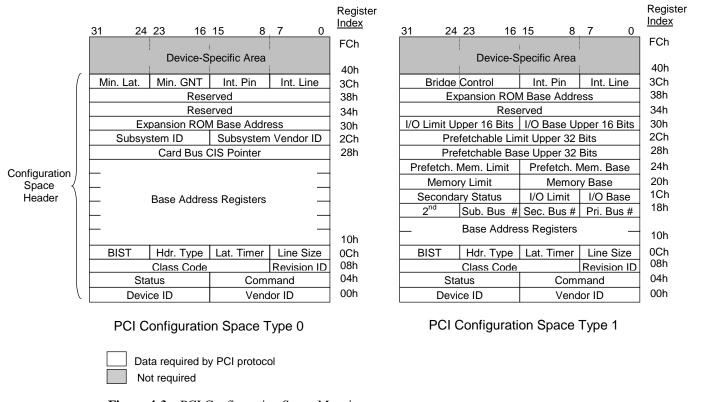


Figure 4-3. PCI Configuration Space Mapping

Each PCI device is identified with a vendor ID (assigned to the vendor by the PCI Special Interest Group) and a device ID (assigned by the vendor). The device and vendor IDs for the devices on the system board are listed in Table 4-2.

Table 4-2. System Board PCI Device Identification				
PCI Device	Vendor ID	Device ID		
82815 GMCH:				
Memory Controller	8086h	1130h		
AGP Bridge	8086h	1131h		
1740 Graphics Controller	8086h	1132h		
82801AA ICH:				
PCI Bridge	8086h	2418h		
LPC Bridge	8086h	2410h		
EIDE Controller	8086h	2411h		
USB I/F	8086h	2412h		
SMBus Controller	8086h	2413h		
AC97 Audio Controller	8086h	2415h		
AC97 Modem Controller	8086h	2416h		

4.2.2 PCI BUS MASTER ARBITRATION

The PCI bus supports a bus master/target arbitration scheme. A bus master is a device that has been granted control of the bus for the purpose of initiating a transaction. A target is a device that is the recipient of a transaction. The Request (REQ), Grant (GNT), and FRAME signals are used by PCI bus masters for gaining access to the PCI bus. When a PCI device needs access to the PCI bus (and does not already own it), the PCI device asserts it's REQn signal to the PCI bus arbiter (a function of the system controller component). If the bus is available, the arbiter asserts the GNTn signal to the requesting device, which then asserts FRAME and conducts the address phase of the transaction with a target. If the PCI device already owns the bus, a request is not needed and the device can simply assert FRAME and conduct the transaction. Table 4-3 shows the grant and request signals assignments for the devices on the PCI bus.

Table 4-3.			
	PCI Bus Mastering Devices		
REQ/GNT Line	Device		
REQ0/GNT0	PCI Connector Slot 1		
REQ1/GNT1	PCI Connector Slot 2		
REQ2/GNT2	PCI Connector Slot 3		
GREQ/GGNT	AGP Slot [1]		

NOTE:

[1] Deskpro EN SDT and CMT models only.

PCI bus arbitration is based on a round-robin scheme that complies with the fairness algorithm specified by the PCI specification. The bus parking policy allows for the current PCI bus owner (excepting the PCI/ISA bridge) to maintain ownership of the bus as long as no request is asserted by another agent. Note that most CPU-to-DRAM and AGP-to-DRAM accesses can occur concurrently with PCI traffic, therefore reducing the need for the Host/PCI bridge to compete for PCI bus ownership.

4.2.3 OPTION ROM MAPPING

During POST, the PCI bus is scanned for devices that contain their own specific firmware in ROM. Such option ROM data, if detected, is loaded into system memory's DOS compatibility area (refer to the system memory map shown in chapter 3).

4.2.4 PCI INTERRUPTS

Eight interrupt signals (INTA- thru INTH-) are available for use by PCI devices. These signals may be generated by on-board PCI devices or by devices installed in the PCI slots. For more information on interrupts including PCI interrupt mapping refer to the "System Resources" section 4.4.

4.2.5 PCI POWER MANAGEMENT SUPPORT

This system complies with the PCI Power Management Interface Specification (rev 1.0). The PCI Power Management Enable (PME-) signal is supported by the chipset and allows compliant PCI and AGP peripherals to initiate the power management routine.

4.2.6 PCI SUB-BUSSES

The chipset implements two data busses that are supplementary in operation to the PCI bus:

4.2.6.1 **Hub Link Bus**

The chipset implements a Hub Link bus between the GMCH and the ICH. The Hub Link bus handles transactions at a 66-MHz rate using PCI-type protocol, and in fact operates as PCI bus #0. This bus is transparent to software and not accessible for expansion purposes.

4.2.6.2 LPC Bus

The 82801 ICH implements a Low Pin Count (LPC) bus for handling transactions to and from the 47B357 Super I/O Controller as well as the 82802 FWH. The LPC bus transfers data a nibble (4 bits) at a time at a 33-MHz rate. Generally transparent in operation, the LPC bus becomes a factor primarily during the configuration of DMA channel modes (see section 4.4.3 "DMA").

4.2.7 PCI CONFIGURATION

PCI bus operations require the configuration of certain parameters such as PCI IRQ routing, DMA channel configuration, RTC control, port decode ranges, and power management options. These parameters are handled by the LPC I/F bridge function (PCI function #0, device 31) of the ICH component and configured through the PCI configuration space registers listed in Table 4-4. Configuration is provided by BIOS at power-up but re-configurable by software.

Table 4-4.LPC Bridge Configuration Registers (ICH, Function 0, Device 31)

PCI			PCI		
Config.		Reset	Config.		Reset
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vendor ID	8086h	8Ah	Device 31 Error Status	00h
02, 03h	Device ID	2410h	90, 91h	PCI DMA Configuration	0000h
04, 05h	Command	000Fh	A0-CFh	Power Management	
06, 07h	Status	0280h	D0-D3h	General Control	0's
08h	Revision ID	00h	D4-D7h	General Status	F00h
0A-0Bh	Class Code	0106h	D8h	RTC Configuration	00h
0Eh	Header Type	80h	E0h	LPC COM Port Dec. Range	00h
40-43h	ACPI Base Address	1	E1h	LPC FDD & LPT Dec. Rge	00h
44h	ACPI Control	00h	E2h	LPC Audio Dec. Range	80h
4E, 4Fh	BIOS Control	0000h	E3h	FWH Decode Enable	FFh
54h	TCO Control	00h	E4, E5h	LPC I/F Decode Range 1	0000h
58-5Bh	GPIO Base Address	1	E6, E7h	LPC I/F Enables	0000h
5Ch	GPIO Control	00h	E8h	FWH Select	00
60-63h	INTA-D Routing Cntrl.	80h [1]	EC, EDh	LPC I/F Decode Range 2	0000h
64h	Serial IRQ Control	10h	EE, EFh	Reserved	
65-87h	Reserved		F0h	Reserved	
88h	Dev. 31 Error Config.	00h	F2h	Function Disable Register	00h

NOTE:

[1] Value for each byte. Assume unmarked locations/gaps as reserved.

4.2.8 PCI CONNECTOR

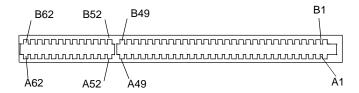


Figure 4-4. PCI Bus Connector (32-Bit Type)

				Table	4-5.
			PCI	Bus Conne	ctor Pinout
Pin	B Signal	A Signal	Pin	B Signal	A Signal
01	-12 VDC	TRST-	32	AD17	AD16
02	TCK	+12 VDC	33	C/BE2-	+3.3 VDC
03	GND	TMS	34	GND	FRAME-
04	TDO	TDI	35	IRDY-	GND
05	+5 VDC	+5 VDC	36	+3.3 VDC	TRDY-
06	+5 VDC	INTA-	37	DEVSEL-	GND
07	INTB-	INTC-	38	GND	STOP-
-08	INTD-	+5 VDC	39	LOCK-	+3.3 VDC
09	PRSNT1-	Reserved	40	PERR-	SDONE n
10	RSVD	+5 VDC	41	+3.3 VDC	SBO-
11	PRSNT2-	Reserved	42	SERR-	GND
12	GND	GND	43	+3.3 VDC	PAR
13	GND	GND	44	C/BE1-	AD15
14	RSVD	+3.3 AUX	45	AD14	+3.3 VDC
15	GND	RST-	46	GND	AD13
16	CLK	+5 VDC	47	AD12	AD11
17	GND	GNT-	48	AD10	GND
18	REQ-	GND	49	GND	AD09
19	+5 VDC	PME-	50	Key	Key
20	AD31	AD30	51	Key	Key
21	AD29	+3.3 VDC	52	AD08	C/BE0-
22	GND	AD28	53	AD07	+3.3 VDC
23	AD27	AD26	54	+3.3 VDC	AD06
24	AD25	GND	55	AD05	AD04
25	+3.3 VDC	AD24	56	AD03	GND
26	C/BE3-	IDSEL	57	GND	AD02
27	AD23	+3.3 VDC	58	AD01	AD00
28	GND	AD22	59	+5 VDC	+5 VDC
29	AD21	AD20	60	ACK64-	REQ64-
30	AD19	GND	61	+5 VDC	+5 VDC
31	+3.3 VDC	AD18	62	+5 VDC	+5 VDC

4.3 AGP BUS OVERVIEW

NOTE: These systems provide an AGP slot and may implement either an on-board AGP graphics adapter with a GPA/AIMM card or separate AGP graphics card. For a detailed description of AGP bus operations as supported by these systems refer to the *AGP Interface Specification Rev. 2.0* available at the following AGP forum web site: http://www.agpforum.org/index.htm

The Accelerated Graphics Port (AGP) bus is specifically designed as an economical yet high-performance interface for graphics adapters, especially those designed for 3D operations. The AGP interface is designed to give graphics adapters dedicated pipelined access to system memory for the purpose of off-loading texturing, z-buffering, and alpha blending used in 3D graphics operations. By off-loading a large portion of 3D data to system memory the AGP graphics adapter only requires enough memory for frame buffer (display image) refreshing.

4.3.1 BUS TRANSACTIONS

The operation of the AGP bus is based on the 66-MHz PCI specification but includes additional mechanisms to increase bandwidth. During the configuration phase the AGP bus acts in accordance with PCI protocol. Once graphics data handling operation is initiated, AGP-defined protocols take effect. The AGP graphics adapter acts generally as the AGP master, but can also behave as a "PCI" target during fast writes from the GMCH.

Key differences between the AGP interface and the PCI interface are as follows:

- ♦ Address phase and associated data transfer phase are disconnected transactions. Addressing and data transferring occur as contiguous actions on the PCI bus. On the AGP bus a request for data and the transfer of data may be separated by other operations.
- Commands on the AGP bus specify system memory accesses only. Unlike the PCI bus, commands involving I/O and configuration are not required or allowed. The system memory address space used in AGP operations is the same linear space used by PCI memory space commands, but is further specified by the graphics address re-mapping table (GART) of the north bridge component.
- ◆ Data transactions on the AGP bus involve eight bytes or multiples of eight bytes. The AGP memory addressing protocol uses 8-byte boundaries as opposed to PCI's 4-byte boundaries. If a transfer of less than eight bytes is needed, the remaining bytes are filled with arbitrary data that is discarded by the target.
- Pipelined requests are defined by length or size on the AGP bus. The PCI bus defines transfer lengths with the FRAME- signal.

There are two basic types of transactions on the AGP bus: data requests (addressing) and data transfers. These actions are separate from each other.

4.3.1.1 Data Request

Requesting data is accomplished in one of two ways; either multiplexed addressing (using the AD lines for addressing/data) or demultiplexed ("sideband") addressing (using the SBA lines for addressing only and the AD lines for data only). Even though there are only eight SBA lines (as opposed to the 32 AD lines) sideband addressing maximizes efficiency and throughput by allowing the AD lines to be exclusively used for data transfers. Sideband addressing occurs at the same rate (1X, 2X, or 4X) as data transfers. The differences in rates will be discussed in the next section describing data transfers. Note also that sideband addressing is limited to 48 bits (address bits 48-63 are assumed zero). The GMCH component supports both SBA and AD addressing, but the method and rate is selected by the AGP graphics adapter.

4.3.1.2 Data Transfers

Data transfers use the AD lines and occur as the result of data requests described previously. Each transaction resulting from a request involves at least eight bytes, requiring the 32 AD lines to handle at least two transfers per request. The 82815 GMCH supports three transfer rates: 1X, 2X, and 4X. Regardless of the rate used, the speed of the bus clock is constant at 66 MHz. The following subsections describe how the use of additional strobe signals makes possible higher transfer rates.

AGP 1X Transfers

During a AGP 1X transfer the 66-MHz CLK signal is used to qualify the control and data signals. Each 4-byte data transfer is synchronous with one CLK cycle so it takes two CLK cycles for a minimum 8-byte transfer (Figure 4-5 shows two 8-byte transfers). The GNT- and TRDY- signals retain their traditional PCI functions. The ST0..3 signals are used for priority encoding, with "000" for low priority and "001" indicating high priority. The signal level for AGP 1X transfers may be 3.3 or 1.5 VDC.

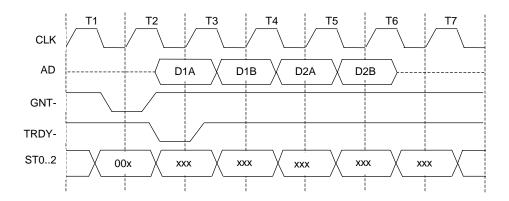


Figure 4-5. AGP 1X Data Transfer (Peak Transfer Rate: 266 MB/s)

AGP 2X Transfers

During AGP 2X transfers, clocking is basically the same as in 1X transfers except that the 66-MHz CLK signal is used to qualify only the control signals. The data bytes are latched by an additional strobe (AD_STBx) signal so that an 8-byte transfer occurs in one CLK cycle (Figure 4-6). The first four bytes (DnA) are latched by the receiving agent on the falling edge of AD_STBx and the second four bytes (DnB) are latched on the rising edge of AD_STBx. The signal level for AGP 2X transfers may be 3.3 or 1.5 VDC.

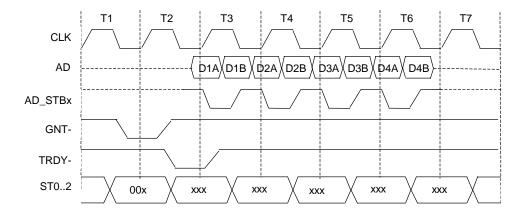


Figure 4-6. AGP 2X Data Transfer (Peak Transfer Rate: 532 MB/s)

AGP 4X Transfers

The AGP 4X transfer rate allows sixteen bytes of data to be transferred in one clock cycle. As in 2X transfers the 66-MHz CLK signal is used only for qualifying control signals while strobe signals are used to latch each 4-byte transfer on the AD lines. As shown in Figure 4-7, 4-byte block DnA is latched by the falling edge of AD_STBx while DnB is latched by the falling edge of AD_STBx-. The signal level for AGP 4X transfers is 1.5 VDC.

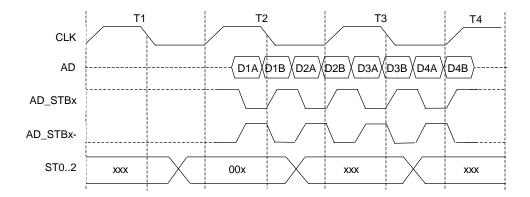


Figure 4-7. AGP 4X Data Transfer (Peak Transfer Rate: 1064 MB/s)

4.3.2 AGP CONFIGURATION

AGP bus operations require the configuration of certain parameters involving system memory access by the AGP graphics adapter. The AGP bus interface is configured as a PCI device integrated within the north bridge (GMCH, device 1) component. The AGP function is, from the PCI bus perspective, treated essentially as a PCI/PCI bridge and configured through PCI configuration registers (Table 4-6). Configuration is accomplished by BIOS during POST.

NOTE: Configuration of the AGP bus interface involves functions 0 and 1 of the GMCH. Function 0 registers (listed in Table 3-4) include functions that affect basic control (GART) of the AGP.

Table 4-6.PCI/AGP Bridge Function Configuration Registers (GMCH, Function 1)

PCI			PCI		
Config.		Reset	Config.		Reset
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vendor ID	8086h	1Bh	Sec. Master Latency Timer	00h
02, 03h	Device ID	1131h	1Ch	I/O Base Address	F0h
04, 05h	Command	0000h	1Dh	I/O Limit Address	00h
06, 07h	Status	0020h	1E, 1Fh	Sec. PCI/PCI Status	02A0h
08h	Revision ID	00h	20, 21h	Memory Base Address	FFF0h
0A, 0Bh	Class Code	0406h	22, 23h	Memory Limit Address	0000h
0Eh	Header Type	01h	24, 25h	Prefetch Mem. Base Addr.	FFF0h
18h	Primary Bus Number	00h	26, 27h	Prefetch Mem. Limit Addr.	0000h
19h	Secondary Bus Number	00h	3Eh	PCI/PCI Bridge Control	00h
1Ah	Subordinate Bus Number	00h	3F-FFh	Reserved	00h

NOTE:

Assume unmarked locations/gaps as reserved. Refer to Intel documentation for detailed register descriptions.

The AGP graphics adapter (actually its resident controller) is configured as a standard PCI device.

4.3.3 AGP CONNECTOR

Figure 4-8. Universal AGP Bus Connector

	Table 4-7.							
	AGP Bus Connector Pinout							
Pin	A Signal	B Signal	Pin	A Signal	B Signal	Pin	A Signal	B Signal
01	+12 VDC	OVRCNT-	23	GND	GND	45	VDD3	VDD3
02	Type Det-	VDD	24	NC	VDD3 Aux	46	TRDY-	DEVSEL-
03	NC	VDD	25	VDD3	VDD3	47	STOP-	VDDQ
04	USBN	USBP	26	PAD30	PAD31	48	PME-	PERR-
05	GND	GND	27	PAD28	PAD29	49	GND	GND
06	INTA-	INTB-	28	VDD3	VDD3	50	PAR	SERR-
07	RESET	CLK	29	PAD26	PAD27	51	PAD15	CBE1-
08	GNT-	REQ-	30	PAD24	PAD25	52	VDDQ	VDDQ
09	VDD3	VDD3	31	GND	GND	53	PAD13	PAD14
10	ST1	ST0	32	AD_STB1-	AD_STB1	54	PAD11	PAD12
11	NC	ST2	33	CBE3-	PAD23	55	GND	GND
12	PIPE-	RBF-	34	VDDQ	VDDQ	56	PAD09	PAD10
13	GND	GND	35	PAD22	PAD21	57	CBE0-	PAD08
14	WBF-	NC	36	PAD20	PAD19	58	VDDQ	VDDQ
15	SBA1	SBA0	37	GND	GND	59	AD_STB0-	AD_STB0
16	VDD3	VDD3	38	PAD18	PAD17	60	PAD06	PAD07
17	SBA3	SBA2	39	PAD16	CBE2-	61	GND	GND
18	SB_STB-	SB_STB	40	VDDQ	VDDQ	62	PAD04	PAD05
19	GND	GND	41	FRAME-	IRDY-	63	PAD02	PAD03
20	SBA5	SBA4	42	NC	VDD3 Aux	64	VDDQ	VDDQ
21	SBA7	DBA6	43	GND	GND	65	PAD00	PAD01
22	NC	NC	44	NC	NC	66	VREFGC	VREFCG

NOTES;

NC = Not connected

 $\rm VDDQ=3.3~VDC$ when TYPE DET- is left open by AGP 1X/2X card. $\rm VDDQ=1.5~VDC$ when TYPE DET- is grounded by AGP 4X card.

4.4 SYSTEM RESOURCES

This section describes the availability and basic control of major subsystems, otherwise known as resource allocation or simply "system resources." System resources are provided on a priority basis through hardware interrupts and DMA requests and grants.

4.4.1 INTERRUPTS

The microprocessor uses two types of hardware interrupts; maskable and nonmaskable. A maskable interrupt can be enabled or disabled within the microprocessor by the use of the STI and CLI instructions. A nonmaskable interrupt cannot be masked off within the microprocessor, although it may be inhibited by hardware or software means external to the microprocessor.

4.4.1.1 Maskable Interrupts

The maskable interrupt is a hardware-generated signal used by peripheral functions within the system to get the attention of the microprocessor. Peripheral functions produce a unique INTA-H (PCI) or IRQ0-15 (ISA) signal that is routed to interrupt processing logic that asserts the interrupt (INTR-) input to the microprocessor. The microprocessor halts execution to determine the source of the interrupt and then services the peripheral as appropriate. Figure 4-9 shows the routing of PCI and ISA interrupts. Most IRQs are routed through the I/O controller, which contains a serializing function. A serialized interrupt stream is applied to the 82801 ICH.

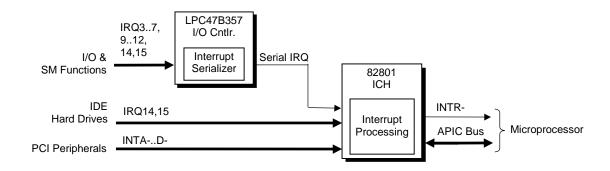


Figure 4-9. Maskable Interrupt Processing, Block Diagram

The 82801 ICH component can be configured (through the Setup utility) to handle interrupts in one of two modes of operation:

- ♦ 8259 mode
- ♦ APIC mode

8259 Mode

In 8259-Mode, interrupts IRQ0-IRQ15 are handled in the conventional (AT-system) method using logic that is the equivalent of two 8259 interrupt controllers. Table 4-8 lists the standard source configuration for maskable interrupts and their priorities in 8259 mode. If more than one interrupt is pending, the highest priority (lowest number) is processed first.

Table 4-8. Maskable Interrupt Priorities and Assignments				
Priority	Signal Label	Source (Typical)		
1	IRQ0	Interval timer 1, counter 0		
2	IRQ1	Keyboard		
3	IRQ8-	Real-time clock		
4	IRQ9	Unused		
5	IRQ10	Unused		
6	IRQ11	Unused		
7	IRQ12	Mouse		
8	IRQ13	Coprocessor (math)		
9	IRQ14	IDE primary I/F		
10	IRQ15	IDE secondary I/F		
11	IRQ3	Serial port (COM2)		
12	IRQ4	Serial port (COM1)		
13	IRQ5	Unused		
14	IRQ6	Diskette drive controller		
15	IRQ7	Parallel port (LPT1)		
	IRQ2	NOT AVAILABLE (Cascade from interrupt controller 2)		

APIC Mode

The Advanced Programmable Interrupt Controller (APIC) mode enhances interrupt-processing performance with the following advantages:

- Eliminating the processor's interrupt acknowledge cycle by using a separate APIC bus.
- Programmable interrupt priority.
- ♦ Additional interrupts (total of 24).

Four PCI interrupts are available in APIC mode. The PCI interrupts are evenly distributed to minimize latency and are wired as follows:

ICH Int. Cntlr.		PCI Slot 1	PCI Slot 2	PCI Slot 3	AGP Slot	USB I/F	i740 Cntlr. [1]
INTA-	Wired	INTA-	INTD-	INTC-			INTA-
INTB-	to	INTB-	INTA-	INTD-			INTB-
INTC-	10	INTC-	INTB-	INTA-	INTA-		
INTD-		INTD-	INTC-	INTD-	INTB-	INTA-	

NOTE:

[1] Internal graphics controller of the 82815 GMCH, wired internally.

NOTE: The APIC mode is supported by Windows NT/2000 operating systems. Systems using the Windows 95 or 98 operating system will need to run in 8259 mode. The mode is selectable through the Setup utility (access with F10 key during boot sequence).

Maskable Interrupt processing is controlled and monitored through standard AT-type I/O-mapped registers. These registers are listed in Table 4-9.

Table 4-9.				
Maskable Interrupt Control Registers				
I/O Port	Register			
020h	Base Address, Int. Cntlr. 1			
021h	Initialization Command Word 2-4, Int. Cntlr. 1			
0A0h	Base Address, Int. Cntlr. 2			
0A1h	Initialization Command Word 2-4, Int. Cntlr. 2			

The initialization and operation of the interrupt control registers follows standard AT-type protocol.

4.4.1.2 Non-Maskable Interrupts

Non-maskable interrupts cannot be masked (inhibited) within the microprocessor itself but may be maskable by software using logic external to the microprocessor. There are two non-maskable interrupt signals: the NMI- and the SMI-. These signals have service priority over all maskable interrupts, with the SMI- having top priority over all interrupts including the NMI-.

NMI- Generation

The Non-Maskable Interrupt (NMI-) signal can be generated by one of the following actions:

- Parity errors detected on a PCI bus (activating SERR- or PERR-).
- ♦ Microprocessor internal error (activating IERRA or IERRB)

The SERR- and PERR- signals are routed through the ICH component, which in turn activates the NMI to the microprocessor.

The NMI Status Register at I/O port 061h contains NMI source and status data as follows:

NMI Status Register 61h

Bit	Function
7	NMI Status:
	0 = No NMI from system board parity error.
	1 = NMI requested, read only
6	IOCHK- NMI:
	0 = No NMI from IOCHK-
	1 = IOCHK- is active (low), NMI requested, read only
5	Interval Timer 1, Counter 2 (Speaker) Status
4	Refresh Indicator (toggles with every refresh)
3	IOCHK- NMI Enable/Disable:
	0 = NMI from IOCHK- enabled
	1 = NMI from IOCHK- disabled and cleared (R/W)
2	System Board Parity Error (PERR/SERR) NMI Enable:
	0 = Parity error NMI enabled
	1 = Parity error NMI disabled and cleared (R/W)
1	Speaker Data (R/W)
0	Inteval Timer 1, Counter 2 Gate Signal (R/W)
	0 = Counter 2 disabled
	1 = Counter 2 enabled

Functions not related to NMI activity.

After the active NMI has been processed, status bits <7> or <6> are cleared by pulsing bits <2> or <3> respectively.

The NMI Enable Register (070h, <7>) is used to enable/disable the NMI signal. Writing 80h to this register masks generation of the NMI-. Note that the lower six bits of register at I/O port 70h affect RTC operation and should be considered when changing NMI- generation status.

SMI- Generation

The SMI- (System Management Interrupt) is typically used for power management functions. When power management is enabled, inactivity timers are monitored. When a timer times out, SMI- is asserted and invokes the microprocessor's SMI handler. The SMI- handler works with the APM BIOS to service the SMI- according to the cause of the timeout.

Although the SMI- is primarily used for power managment the interrupt is also employed for the QuickLock/QuickBlank functions as well.

4.4.2 DIRECT MEMORY ACCESS

Direct Memory Access (DMA) is a method by which a device accesses system memory without involving the microprocessor. Although the DMA method has been traditionally used to transfer blocks of data to or from an ISA I/O device, PCI devices may also use DMA operation as well. The DMA method reduces the amount of CPU interactions with memory, freeing the CPU for other processing tasks.

NOTE: This section describes DMA in general. For detailed information regarding DMA operation, refer to the data manual for the Intel 82801BA I/O Controller Hub.

The 82801 ICH component includes the equivalent of two 8237 DMA controllers cascaded together to provide eight DMA channels, each (excepting channel 4) configurable to a specific device. Table 4-10 lists the default configuration of the DMA channels.

Table 4-10.					
Default DN	Default DMA Channel Assignments				
DMA Channel	Device ID				
Controller 1 (byte transfers)					
0	Spare				
1	Audio subsystem				
2	Diskette drive				
3	ECP LPT1				
Controller 2 (word transfers)					
4	Cascade for controller 1				
5	Spare				
6	Spare				
7	Spare				

All channels in DMA controller 1 operate at a higher priority than those in controller 2. Note that channel 4 is not available for use other than its cascading function for controller 1. The DMA controller 2 can transfer words only on an even address boundary. The DMA controller and page register define a 24-bit address that allows data transfers within the address space of the CPU.

In addition to device configuration, each channel can be configured (through PCI Configuration Registers) for one of two modes of operation:

- ♦ LPC DMA
- ♦ PC/PCI DMA

The LPC DMA mode uses the LPC bus to communicate DMA channel control and is implemented for devices using DMA through the LPC47B357 I/O controller such as the diskette drive controller.

The PC/PCI DMA mode uses the REQ#/GNT# signals to communicate DMA channel control and is used by PCI expansion devices.

The DMA logic is accessed through two types of I/O mapped registers; page registers and controller registers.

4.4.2.1 DMA Page Registers

The DMA page register contains the eight most significant bits of the 24-bit address and works in conjunction with the DMA controllers to define the complete (24-bit)address for the DMA channels. Table 4-11 lists the page register port addresses.

	Table 4-11.
DMA Page	Register Addresses
DMA Channel	Page Register I/O Port
Controller 1 (byte transfers)	
Ch 0	087h
Ch 1	083h
Ch 2	081h
Ch 3	082h
Controller 2 (word transfers)	
Ch 4	n/a
Ch 5	08Bh
Ch 6	089h
Ch 7	08Ah
Refresh	08Fh [see note]

NOTE:

The DMA memory page register for the refresh channel must be programmed with 00h for proper operation.

The memory address is derived as follows:

24-Bit Address - Contro	oller 1 (Byte Transfers)
8-Bit Page Register	8-Bit DMA Controller
A23A16	A15A00

24-Bit Address - Controller 2 (Word Transfers)

8-Bit Page Register
A23..A17

A16..A01, (A00 = 0)

Note that address line A16 from the DMA memory page register is disabled when DMA controller 2 is selected. Address line A00 is not connected to DMA controller 2 and is always 0 when wordlength transfers are selected.

By not connecting A00, the following applies:

- ♦ The size of the the block of data that can be moved or addressed is measured in 16-bits (words) rather than 8-bits (bytes).
- The words must always be addressed on an even boundary.

DMA controller 1 can move up to 64 Kbytes of data per DMA transfer. DMA controller 2 can move up to 64 Kwords (128 Kbytes) of data per DMA transfer. Word DMA operations are only possible between 16-bit memory and 16-bit peripherals.

The RAM refresh is designed to perform a memory read cycle on each of the 512 row addresses in the DRAM memory space. Refresh operations are used to refresh memory on the 32-bit memory bus and the ISA bus. The refresh address is provided on lines SA00 through SA08. Address lines LA23..17, SA18,19 are driven low.

The remaining address lines are in an undefined state during the refresh cycle. The refresh operations are driven by a 69.799-KHz clock generated by Interval Timer 1, Counter 1. The refresh rate is 128 refresh cycles in 2.038 ms.

4.4.2.2 DMA Controller Registers

Table 4-12 lists the DMA Controller Registers and their I/O port addresses. Note that there is a set of registers for each DMA controller.

Table 4-12.				
DMA Contro	DMA Controller Registers			
Register	Controller 1	Controller 2	R/W	
Status	008h	0D0h	R	
Command	008h	0D0h	W	
Mode	00Bh	0D6h	W	
Write Single Mask Bit	00Ah	0D4h	W	
Write All Mask Bits	00Fh	0DEh	W	
Software DRQx Request	009h	0D2h	W	
Base and Current Address - Ch 0	000h	0C0h	W	
Current Address - Ch 0	000h	0C0h	R	
Base and Current Word Count - Ch 0	001h	0C2h	W	
Current Word Count - Ch 0	001h	0C2h	R	
Base and Current Address - Ch 1	002h	0C4h	W	
Current Address - Ch 1	002h	0C4h	R	
Base and Current Word Count - Ch 1	003h	0C6h	W	
Current Word Count - Ch 1	003h	0C6h	R	
Base and Current Address - Ch 2	004h	0C8h	W	
Current Address - Ch 2	004h	0C8h	R	
Base and Current Word Count - Ch 2	005h	0CAh	W	
Current Word Count - Ch 2	005h	0CAh	R	
Base and Current Address - Ch 3	006h	0CCh	W	
Current Address - Ch 3	006h	0CCh	R	
Base and Current Word Count - Ch 3	007h	0CEh	W	
Current Word Count - Ch 3	007h	0CEh	R	
Temporary (Command)	00Dh	0DAh	R	
Reset Pointer Flip-Flop (Command)	00Ch	0D8h	W	
Master Reset (Command)	00Dh	0DAh	W	
Reset Mask Register (Command)	00Eh	0DCh	W	

4.5 SYSTEM CLOCK DISTRIBUTION

These systems use an Intel CK-type clock generator and crystal for generating the clock signals required by the system board components. Table 4-13 lists the system board clock signals and how they are distributed.

Table 4-13. Clock Generation and Distribution		
Frequency	Source	Destination
66, 100, or 133 MHz	CK	Processor, GMCH
100 or 133 MHz	CK	DIMM sockets
66 MHz	CK	ICH, AGP Graphics Cntlr.
48 MHz	CK	ICH, I/O Cntlr.
33 MHz	CK	Processor, ICH, PCI Slots
14.31818 MHz	Crystal	CK

Certain clock outputs are turned off during reduced power modes to conserve energy. Clock output control is handled through the SMBus interface by BIOS.

4.6 REAL-TIME CLOCK AND CONFIGURATION MEMORY

The Real-time clock (RTC) and configuration memory (also referred to as "CMOS") functions are provided by the 82801 ICH component and is MC146818-compatible. As shown in the following figure, the 82801 ICH component provides 256 bytes of battery-backed RAM divided into two 128-byte configuration memory areas. The RTC uses the first 14 bytes (00-0Dh) of the standard memory area. All locations of the standard memory area (00-7Fh) can be directly accessed using conventional OUT and IN assembly language instructions through I/O ports 70h/71h, although the suggested method is to use the INT15 AX=E823h BIOS call.

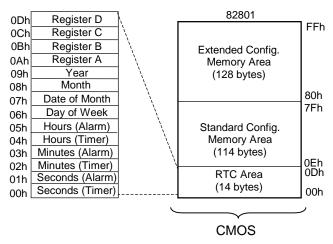


Figure 4-10. Configuration Memory Map

A lithium 3-VDC battery is used for maintaining the RTC and configuration memory while the system is powered down. During system operation a wire-Ored circuit allows the RTC and configuration memory to draw power from the power supply. The battery is located in a battery holder on the system board and has a life expectancy of four to eight years. When the battery has expired it is replaced with a Renata CR2032 or equivalent 3-VDC lithium battery.

4.6.1 CLEARING CMOS

The contents of configuration memory (including the Power-On Password) can be cleared by the following procedure:

- 1. Turn off the unit.
- 2. Disconnect the AC power cord from the outlet and/or system unit.
- Remove the chassis hood (cover) and insure that no LEDs on the system board are illuminated.
- 4. Press and release the CMOS clear button on the system board.
- 5. Replace the chassis hood (cover).
- 6. Reconnect the AC power cord to the outlet and/or system unit.
- 7. Turn the unit on.

To clear **only** the Power-On Password refer to section 4.7.1.1.

4.6.2 CMOS ARCHIVE AND RESTORE

During the boot sequence the BIOS saves a copy of NVRAM (CMOS contents, password(s) and other system variables) in a portion of the flash ROM. Should the system become un-usable, the last good copy of NVRAM data can be restored with the Power Button Override function. This function is invoked with the following procedure:

- 1. With the unit powered down, press and release the power button.
- 2. Immediately after releasing the power button in step 1, press and hold the power button until the unit powers down. This action will be recorded as a Power Button Override event.

With the next startup sequence the BIOS will detect the occurrence of the Power Button Override event and will load the backup copy of NVRAM from the ROM to the CMOS.

NOTE: The Power Button Override feature does **not** allow quick cycling of the system (turning on then off). If the power cord is disconnected during the POST routine, the splash screen image may become corrupted, requiring a re-flashing of the ROM (refer to chapter 8, BIOS ROM).

4.6.3 STANDARD CMOS LOCATIONS

Table 4-14 and the following paragraphs describe standard configuration memory locations 0Ah-3Fh. These locations are accessible using OUT/IN assembly language instructions using port 70/71h or BIOS function INT15, AX=E823h.

Table 4-14.			
Configuration Memory (CMOS) Map			
Location	Function	Location	Function
00-0Dh	Real-time clock	24h	System board ID
0Eh	Diagnostic status	25h	System architecture data
0Fh	System reset code	26h	Auxiliary peripheral configuration
10h	Diskette drive type	27h	Speed control external drive
11h	Reserved	28h	Expanded/base mem. size, IRQ12
12h	Hard drive type	29h	Miscellaneous configuration
13h	Security functions	2Ah	Hard drive timeout
14h	Equipment installed	2Bh	System inactivity timeout
15h	Base memory size, low byte/KB	2Ch	Monitor timeout, Num Lock Cntrl
16h	Base memory size, high byte/KB	2Dh	Additional flags
17h	Extended memory, low byte/KB	2Eh-2Fh	Checksum of locations 10h-2Dh
18h	Extended memory, high byte/KB	30h-31h	Total extended memory tested
19h	Hard drive 1, primary controller	32h	Century
1Ah	Hard drive 2, primary controller	33h	Miscellaneous flags set by BIOS
1Bh	Hard drive 1, secondary controller	34h	International language
1Ch	Hard drive 2, secondary controller	35h	APM status flags
1Dh	Enhanced hard drive support	36h	ECC POST test single bit
1Eh	Reserved	37h-3Fh	Power-on password
1Fh	Power management functions	40-FFh	Feature Control/Status

NOTES:

Assume unmarked gaps are reserved.

RTC Control Register A, Byte 0Ah

Bit	Function	
7	Update in Progress. Read only.	
	0 = Time update will not occur before 2444 us	
	1 = Time update will occur within 2444 us	
64	Divider Chain Control. R/W.	
	00x = Oscillator disabled.	
	010 = Normal operation (time base frequency = 32.768 KHz).	
	11x = Divider chain reset.	
30	Periodic Interrupt Control. R/W. Specifies the periodic interrupt interval	ıl.
	0000 = none 1000 = 3.90625 ms	
	0001 = 3.90625 ms	
	0010 = 7.8125 ms 1010 = 15. 625 ms	
	0011 = 122.070 us 1011 = 31.25 ms	
	0100 = 244.141 us 1100 = 62.50 ms	
	0101 = 488.281 us 1101 = 125 ms	
	0110 = 976.562 us 1110 = 250 ms	
	0111 = 1.953125 ms	

RTC Control Register B, Byte 0Bh

Bit	Function
7	Time Update Enable/disable
	0 = Normal operation, 1 = Disable time updating for time set
6	Periodic Interrupt Enable/Disable.
	0 = Disable, 1 = Enable interval specified by Register A
5	Alarm Interrupt Enable/disable
	0 = Disabled, 1 = Enabled
4	End-of-Update Interrupt Enable/Disable
	0 = Disabled, 1 = Enabled
3	Reserved (read 0)
2	Time/Date Format Select
	0 = BCD format, 1 = Binary format
1	Time Mode
	0 = 12-hour mode, 1 = 24-hour mode
0	Automatic Daylight Savings Time Enable/Disable
	0 = Disable
	1 = Enable (Advance 1 hour on 1 st Sunday in April, retreat 1 hour on last Sunday in
	October).

RTC Status Register C, Byte 0Ch

Bit	Function
7	If set, interrupt output signal active (read only)
6	If set, indicates periodic interrupt flag
5	If set, indicates alarm interrupt
4	If set, indicates end-of-update interrupt
30	Reserved

RTC Status Register D, Byte 0Dh

Bit	Function
7	RTC Power Status
	0 = RTC has lost power
	1 = RTC has not lost power
60	Reserved

Configuration Byte 0Eh, Diagnostic Status Default Value = 00h

This byte contains diagnostic status data.

Configuration Byte 0Fh, System Reset Code

Default Value = 00h

This byte contains the system reset code.

Configuration Byte 10h, Diskette Drive Type

Bit	Function
74	Primary (Drive A) Diskette Drive Type
30	Secondary (Drive B) Diskette Drive Type

Valid values for bits <7..4> and bits <3..0>:

0000 = Not installed

0001 = 360-KB drive

0010 = 1.2-MB drive

0011 = 720-KB drive

0100 = 1.44-MB/1.25-MB drive

0110 = 2.88-MB drive

(all other values reserved)

Configuration Byte 12h, Hard Drive Type

Bit	Function	
74	Primary Controller 1,	Hard Drive 1 Type:
	0000 = none	1000 = Type 8
	0001 = Type 1	1001 = Type 9
		1010 = Type 10
	0011 = Type 3	1011 = Type 11
	0100 = Type 4	1100 = Type 12
	0101 = Type 5	1101 = Type 13
	0110 = Type 6	1110 = Type 14
	0111 = Type 7	1111 = other (use bytes 19h)
30	Primary Controller 1,	Hard Drive 2 Type:
	0000 = none	1000 = Type 8
	0001 = Type 1	1001 = Type 9
	0010 = Type 2	1010 = Type 10
	0011 = Type 3	1011 = Type 11
	0100 = Type 4	1100 = Type 12
	0101 = Type 5	1101 = Type 13
	0110 = Type 6	1110 = Type 14
	0111 = Type 7	1111 = other (use bytes 1Ah)

Configuration Byte 13h, Security Functions

Default Value = 00h

Bit	Function
7	Reserved
6	QuickBlank Enable After Standby:
	0 = Disable
	1 = Enable
5	Administrator Password:
	0 = Not present
	1 = Present
4	Reserved
3	Diskette Boot Enable:
	0 = Enable
	1 = Disable
2	QuickLock Enable:
	0 = Disable
	1 = Enable
1	Network Server Mode/Security Lock Override:
	0 = Disable
	1 = Enable
0	Password State (Set by BIOS at Power-up)
	0 = Not set
	1 = Set

Configuration Byte 14h, Equipment Installed

Default Value (standard configuration) = 03h

Bit	Function	
7,6	No. of Diskette Drives Installed:	
	00 = 1 drive $10 = 3$ drives	
	01 = 2 drives	
52	Reserved	
1	Coprocessor Present	
	0 = Coprocessor not installed	
	1 = Coprocessor installed	
0	Diskette Drives Present	
	0 = No diskette drives installed	
	1 = Diskette drive(s) installed	

Configuration Bytes 15h and 16h, Base Memory Size

Default Value = 280h

Bytes 15h and 16h hold a 16-bit value that specifies the base memory size in 1-KB (1024) increments. Valid base memory sizes are 512 and 640 kilobytes .

Configuration Bytes 17h and 18h, Extended Memory Size

Bytes 17h and 18h hold a 16-bit value that specifies the extended memory size in 1-KB increments.

Configuration Bytes 19h-1Ch, Hard Drive Types

Byte 19h contains the hard drive type for drive 1 of the primary controller if byte 12h bits <7..4> hold 1111b. Byte 1Ah contains the hard drive type for drive 2 of the primary controller if byte 12h bits <3..0> hold 1111b. Bytes1Bh and 1Ch contain the hard drive types for hard drives 1 and 2 of the secondary controller.

Configuration Byte 1Dh, Enhanced IDE Hard Drive Support

Default Value = F0h

Bit	Function
7	EIDE - Drive C (83h)
6	EIDE - Drive D (82h)
5	EIDE - Drive E (81h)
4	EIDE - Drive F (80h)
30	Reserved

Values for bits <7..4>:

0 = Disable

1 = Enable for auto-configure

Configuration Byte 1Fh, Power Management Functions

Default Value = 00h

Bit	Function
74	Reserved
3	Slow Processor Clock for Low Power Mode
	0 = Processor runs at full speed
	1 = Processor runs at slow speed
2	Reserved
1	Monitor Off Mode
	0 = Turn monitor power off after 45 minutes in
	standby
	1 = Leave monitor power on
0	Energy Saver Mode Indicator (Blinking LED)
	0 = Disable
	1 = Enable

Configuration Byte 24h, System Board Identification

Default Value = 7Eh

Configuration memory location 24h holds the system board ID.

Configuration Byte 25h, System Architecture Data

Default Value = 0Bh

Bit	Function
74	Reserved
3	Unmapping of ROM:
	0 = Allowed
	1 = Not allowed
2	Reserved
1,0	Diagnostic Status Byte Address
	00 = Memory locations 80C00000h-80C00004h
	01 = I/O ports 878h-87Ch
	11 = neither place

Configuration Byte 26h, Auxiliary Peripheral Configuration

Default Value = 00h

Delault Value = 0011	
Bit	Function
7,6	I/O Delay Select
	00 = 420 ns (default)

	01 = 300 ns
	10 = 2600 ns
	11 = 540 ns
5	Alternative A20 Switching
	0 = Disable port 92 mode
	1 = Enable port 92 mode
4	Bi-directional Print Port Mode
	0 = Disabled
	1 = Enabled
3	Graphics Type
	0 = Color
	1 = Monochrome
2	Hard Drive Primary/Secondary Address Select:
	0 = Primary
	1 = Secondary
1	Diskette I/O Port
	0 = Primary
	1 = Secondary
0	Diskette I/O Port Enable
	0 = Primary
	1 = Secondary

Configuration Byte 27h, Speed Control/External Drive

Default Value = 00h

Bit	Function
7	Boot Speed
	0 = Max MHz
	1 = Fast speed
60	Reserved

Configuration Byte 28h, Expanded and Base Memory, IRQ12 Select

Default Value = 00h

Bit	Function
7	IRQ12 Select
	0 = Mouse
	1 = Expansion bus
6,5	Base Memory Size:
	00 = 640 KB
	01 = 512 KB
	10 = 256 KB
	11 = Invalid
40	Internal Compaq Memory:
	00000 = None
	00001 = 512 KB
	00010 = 1 MB
	00011 = 1.5 MB
	11111 = 15.5 MB

Configuration Byte 29h, Miscellaneous Configuration Data

Default Value = 00h

Delault value = 0011		
Bit	Function	
75	Reserved	

	4	Primary Hard Drive Enable (Non-PCI IDE Controllers) 0 = Disable 1 = Enable
Ī	30	Reserved

Configuration Byte 2Ah, Hard Drive Timeout

Default Value = 02h

Bit	Function
75	Reserved
40	Hard Drive Timeout (index to SIT timeout record)

Configuration Byte 2Bh, System Inactivity Timeout Default Value = 23h

Bit	Function
7	Reserved
6,5	Power Conservation Boot
	00 = Reserved
	01 = PC on
	10 = PC off
	11 = Reserved
40	System Inactive Timeout. (Index to SIT system timeout
	record)
	00000 = Disabled

Configuration Byte 2Ch, ScreenSave and NUMLOCK Control Default Value = 00h

Poladit Value Coll	
Bit	Function
7	Reserved
6	Numlock Control
	0 = Numlock off at power on
	1 = Numlock on at power on
5	Screen Blank Control:
	0 = No screen blank
	1 = Screen blank w/QuickLock
40	ScreenSave Timeout. (Index to SIT monitor timeout record)
	000000 = Disabled

Configuration Byte 2Dh, Additional Flags

Default Value = 00h

Bit	Function
75	Reserved
4	Memory Test
	0 = Test memory on power up only
	1 = Test memory on warm boot
3	POST Error Handling (BIOS Defined)
	0 = Display "Press F1 to Continue" on error
	1 = Skip F1 message
20	Reserved

Configuration Byte 2Eh, 2Fh, Checksum

These bytes hold the checksum of bytes 10h to 2Dh.

Configuration Byte 30h, 31h, Total Extended Memory Tested

This location holds the amount of system memory that checked good during the POST.

Configuration Byte 32h, Century

This location holds the Century value in a binary coded decimal (BCD) format.

Configuration Byte 33h, Miscellaneous Flags

Default Value = 80h

Bit	Function
7	Memory Above 640 KB
	0 = No, 1 = Yes
6	Reserved
5	Weitek Numeric Coprocessor Present:
	0 = Not installed, 1 = Installed
4	Standard Numeric Coprocessor Present:
	0 = Not installed, 1 = Installed
30	Reserved

Configuration Byte 34h, International Language Support

Default Value = 00h

Configuration Byte 35h, APM Status FlagsDefault Value = 11h

Bit	Function
76	Power Conservation State:
	00 = Ready
	01 = Standby
	10 = Suspend
	11 = Off
5,4	Reserved
3	32-bit Connection:
	0 = Disconnected, 1 = Connected
2	16-bit Connection
	0 = Disconnected, 1 = Connected
1	Real Mode Connection
	0 = Disconnected, 1 = Connected
0	Power Management Enable:
	0 = Disabled
	1 = Enabled

Configuration Byte 36h, ECC POST Test Single Bit Errors

Default Value = 01h

Bit	Function
7	Row 7 Error Detect
6	Row 6 Error Detect
5	Row 5 Error Detect
4	Row 4 Error Detect
3	Row 3 Error Detect
2	Row 2 Error Detect
1	Row 1 Error Detect
0	Row 0 Error Detect

^{0 =} No single bit error detected.

Configuration Byte 37h-3Fh, Power-On Password

These eight locations hold the power-on password.

^{1 =} Single bit error detected.

4.7 SYSTEM MANAGEMENT

This section describes functions having to do with security, power management, temperature, and overall status. These functions are handled by hardware and firmware (BIOS) and generally configured through the Setup utility.

4.7.1 SECURITY FUNCTIONS

These systems include various features that provide different levels of security. Note that this subsection describes **only the hardware functionality** (including that supported by Setup) and does not describe security features that may be provided by the operating system and application software.

4.7.1.1 Power-On Password

These systems include a power-on password, which may be enabled or disabled (cleared) through a jumper on the system board. The jumper controls a GPIO input to the 82801 ICH that is checked during POST. The password is stored in configuration memory (CMOS) and if enabled and then forgotten by the user will require that either the password be cleared (preferable solution and described below) or the entire CMOS be cleared (refer to section 4.6).

To clear the password, use the following procedure:

- 1. Turn off the system and disconnect the AC power cord from the outlet and/or system unit.
- 2. Remove the cover (hood) as described in the appropriate User Guide or Maintainance And Service Guide. Insure that all system board LEDs are off (not illuminated).
- 3. Locate the password header/jumper (labeled E49 on these systems) and remove the jumper from pins 1 and 2 and place on (just) pin 2 (for safekeeping).
- 4. Replace the cover.
- 5. Re-connect the AC power cord to the AC outlet and/or system unit.
- 6. Turn on the system. The POST routine will clear and disable the password.
- 7. To re-enable the password feature, repeat steps 1-6, replacing the jumper on pins 1 and 2 of header E49.

4.7.1.2 Setup Password

The Setup utility may be configured to be always changeable or changeable only by entering a password. The password is held on CMOS and, if forgotten, will require that CMOS be cleared (refer to section 4.6).

4.7.1.3 Cable Lock Provision

These systems include a chassis cutout (on the rear panel) for the attachment of a cable lock mechanism.

4.7.1.4 I/O Interface Security

The serial, parallel, USB, and diskette interfaces may be disabled individually through the Setup utility to guard against unauthorized access to a system. In addition, the ability to write to or boot from a removable media drive (such as the diskette drive) may be enabled through the Setup utility. The disabling of the serial, parallel, and diskette interfaces are a function of the LPC47B357 I/O controller. The USB ports are controlled through the 82801 ICH.

4.7.2 POWER MANAGEMENT

This system provides baseline hardware support of ACPI- and APM-compliant firmware and software. Key power-consuming components (processor, chipset, I/O controller, and fan) can be placed into a reduced power mode either automatically or by user control. The system can then be brought back up ("wake-up") by events defined by the ACPI specification. The ACPI wake-up events supported by this system are listed as follows:

ACPI Wake-Up Event	System Wakes From
Power Button	Suspend or soft-off
RTC Alarm	Suspend or soft-off
Wake On LAN (w/NIC)	Suspend or soft-off
PME	Suspend or soft-off
Serial Port Ring	Suspend or soft-off
USB	Suspend only
Keyboard	Suspend only
Mouse	Suspend only

4.7.3 SYSTEM STATUS

These systems provide a visual indication of system boot and ROM flash status through the keyboard LEDs as listed in table 4-15.

NOTE: The LED indications listed in Table 4-15 are valid only for PS/2-type keyboards. A USB keyboard will not provide LED status for the listed events, although audible (beep) indications will occur.

Table 4-15.
System Boot/ROM Flash Status LED Indications

	NUM Lock	CAPs Lock	Scroll Lock
Event	LED	LED	LED
System memory failure [1]	Blinking	Off	Off
Graphics controller failure [2]	Off	Blinking	Off
System failure prior to graphics cntlr. initialization	Off	Off	Blinking
[3]			
ROMPAQ diskette not present, faulty, or drive	On	Off	Off
prob.			
Password prompt	Off	On	Off
Invalid ROM detected - flash failed	Blinking [4]	Blinking [4]	Blinking [4]
Keyboard locked in network mode	Blinking [5]	Blinking [5]	Blinking [5]
Successful boot block ROM flash	On [6]	On [6]	On [6]
NOTEO			

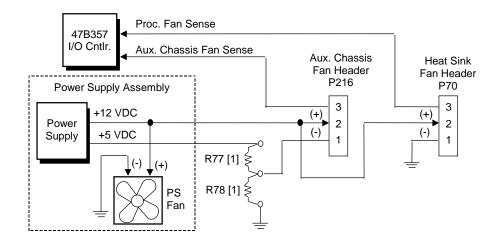
NOTES:

- [1] Accompanied by 1 short, 2 long audio beeps
- [2] Accompanied by 1 long, 2 short audio beeps
- [3] Accompanied by 2 long, 1 short audio beeps
- [4] All LEDs will blink in sync twice, accompanied by 1 long and three short audio beeps
- [5] LEDs will blink in sequence (NUM Lock, then CAPs Lock, then Scroll Lock)
- [6] Accompanied by rising audio tone.

Table 4-16 lists the operation status codes provided by the power LED on the front of the chassis. Note that error or problem conditions are reported only by the power LED on the minitower.

Table 4-16. System Operational Status LED Indications				
Desktop Minitower System Status Power LED Power LED				
S0: System on (normal operation)	Steady green	Steady green		
S1: Suspend	Blinks green @ 1 Hz	Blinks green @ 1 Hz		
S3: Suspend to RAM	Blinks green @ 1 Hz	Blinks green @ 1 Hz		
S4: Suspend to disk	Blinks green @ 0.5 Hz	Blinks green @ 0.5 Hz		
S5: Soft off	Off - clear	Off - clear		
Processor not seated	Off - clear	Steady red		
CPU thermal shutdown	Off - clear	Blinks red @ 4 Hz		
ROM error	Off - clear	Blinks red @ 1 Hz		
Power supply crowbar activated	Off - clear	Blinks red @ .5 Hz		
System off	Off - clear	Off		

4.7.4 TEMPERATURE SENSING


The microprocessor features an internal temperature sensor that will detect an excessive heat condition and initiate a CPU shut-down routine. On minitower systems a Thermal Trip signal routed to the I/O controller is asserted, resulting in the I/O controller's LED logic to blink the front panel Power-On LED red at approximately four times a second.

4.8 SYSTEM COOLING

These systems feature a fan as part of the power supply assembly. All systems also provide a system board connection for an auxiliary chassis fan (installed on some models) as well as a connection for a processor (heat sink) fan (Figure 4-11). All fans operate as long as the power supply is active (producing 12 VDC). The fans are off in S3 (Suspend-to-RAM) and S5 (Soft-Off) states.

NOTE: The system is designed to provide optimum cooling with the cover in place. Operating the system without the cover may result in a thermal condition of system board components, including the processor.

NOTE:

[1] R77 and R78 are 0-ohm resisters, of which only **one** will be present. Most system boards will have R78 in place to apply +12 VDC to the auxiliary chassis fan. System boards in units designated for some European and Asian markets may have R77 in place to apply +7 VDC to auxiliary fan for reduced noise level.

Figure 4-11. Fan Control Block Diagram

4.9 REGISTER MAP AND MISCELLANEOUS FUNCTIONS

This section contains the system I/O map and information on general-purpose functions of the ICH and I/O controller.

4.9.1 SYSTEM I/O MAP

Table 4-17 lists the fixed addresses of the input/output (I/O) ports.

Table 4-17.			
System I/O Map			
I/O Port	Function		
0000001Fh	DMA Controller 1		
0020002Dh	Interrupt Controller 1		
002E, 002Fh	Index, Data Ports to LPC47B357 I/O Controller (primary)		
0030003Dh	Interrupt Controller		
00400042h	Timer 1		
004E, 004Fh	Index, Data Ports to LPC47B357 I/O Controller (secondary)		
00500052h	Timer / Counter		
00600067h	Microcontroller, NMI Controller (alternating addresses)		
00700077h	RTC Controller		
00800091h	DMA Controller		
0092h	Port A, Fast A20/Reset Generator		
0093009Fh	DMA Controller		
00A000B1h	Interrupt Controller 2		
00B2h, 00B3h	APM Control/Status Ports		
00B400BDh	Interrupt Controller		
00C000DFh	DMA Controller 2		
00F0h	Coprocessor error register		
01700177h	IDE Controller 2 (active only if standard I/O space is enabled for primary drive)		
01F001F7h	IDE Controller 1 (active only if standard I/O space is enabled for secondary drive)		
0278027Fh	Parallel Port (LPT2)		
02E802EFh	Serial Port (COM4)		
02F802FFh	Serial Port (COM2)		
03700377h	Diskette Drive Controller Secondary Address		
0376h	IDE Controller 2 (active only if standard I/O space is enabled for primary drive)		
0378037Fh	Parallel Port (LPT1)		
03B003DFh	Graphics Controller		
03BC03BEh	Parallel Port (LPT3)		
03E803EFh	Serial Port (COM3)		
03F003F5h	Diskette Drive Controller Primary Addresses		
03F6h	IDE Controller 1 (active only if standard I/O space is enabled for sec. drive)		
03F803FFh	Serial Port (COM1)		
04D0, 04D1h	Interrupt Controller		
0678067Fh	Parallel Port (LPT2)		
0778077Fh	Parallel Port (LPT1)		
07BC07BEh	Parallel Port (LPT3)		
0CF8h	PCI Configuration Address (dword access only)		
0CF9h	Reset Control Register		
0CFCh	PCI Configuration Data (byte, word, or dword access)		

NOTE:

Assume unmarked gaps are unused, reserved, or used by functions that employ variable I/O address mapping. Some ranges may include reserved addresses.

4.9.2 82801 ICH GENERAL PURPOSE FUNCTIONS

The 82801 ICH component includes a number of single and multi-purpose pins available as general-purpose input/output (GPIO) ports. The GPIO ports are configured (enabled/disabled) during POST by BIOS through the PCI configuration registers of the ICH's LPC I/F Bridge (82801, function 0). The GPIO ports are controlled through 64 bytes of I/O space that is mapped during POST. Table 4-18 lists the utilization of the ICH's GPIO ports in these systems. Table 4-18 lists the GPIO registers for the LPC47B357.

	Table 4-18.			
82801 ICH GPIO Register Utilization				
GPIO Port #	Function	Direction		
0		NC		
1		NC		
2		NC		
3		NC		
4		NC		
5		NC		
6		NC		
7	PCI PERR#	<u> </u>		
8	Password Enable	<u> </u>		
12		NC		
13	SIO SMI	<u> </u>		
18		NC		
19		NC		
20		NC		
21		NC		
22		NC		
23		NC		
24	S3 Power Control	0		
25		NC		
26	SIO 32-KHz Clock	0		
27	SMBus Clock	I/O		
28	SMBus Data	I/O		

NOTE:

NC = not connected (not used).

4.9.3 LPC47B357 I/O CONTROLLER FUNCTIONS

The LPC47B357 I/O controller contains various functions such as the keyboard/mouse interfaces, diskette interface, serial interfaces, and parallel interface. While the control of these interfaces uses standard AT-type I/O addressing (as described in chapter 5) the configuration of these functions uses indexed ports unique to the LPC47B357. In these systems, hardware strapping selects I/O addresses 02Eh and 02Fh at reset as the Index/Data ports for accessing the logical devices within the LPC47B357.

Table 4-19 lists the PnP standard control registers for the LPC47B357.

	Table 4-19.			
LPC47B357 I/O Controller Control Registers				
Index	Index Function			
02h	Configuration Control	00h		
03h	Reserved			
07h	Logical Device (Interface) Select: 00h = Diskette Drive I/F 01h = Reserved 02h = Reserved 03h = Parallel I/F 04h = Serial I/F (UART 1/Port A) 05h = Serial I/F (UART 2/Port B) 06h = Reserved 07h = Keyboard I/F 08h = Reserved 09h = Reserved 0Ah = Runtime Registers (GPIO Config.) 0Bh = Reserved	00h		
20h	Super I/O ID Register (SID)	56h		
21h	Revision			
22h	Logical Device Power Control	00h		
23h	Logical Device Power Management	00h		
24h	PLL / Oscillator Control	04h		
25h	Reserved			
26h	Configuration Address (Low Byte)			
27h	Configuration Address (High Byte)			
28-2Fh	Reserved	•		

NOTE:

For a detailed description of registers refer to appropriate SMC documentation.

The configuration registers are accessed through I/O registers 2Eh (index) and 2Fh (data) after the configuration phase has been activated by writing 55h to I/O port 2Eh. The desired interface (logical device) is initiated by firmware selecting logical device number of the 47B357 using the following sequence:

- 1. Write 07h to I/O register 2Eh.
- 2. Write value of logical device to I/O register 2Fh.
- 3. Write 30h to I/O register 2Eh.
- 4. Write 01h to I/O register 2Fh (this activates the interface).

Writing AAh to 2Eh deactivates the configuration phase.

4.9.3.1 LPC47B357 GPIO Utilization

The LPC47B357 I/O Controller provides 62 general-purpose pins that can be individually configured for specific purposes. These pins are configured through the Runtime registers (logical device 0Ah) during the system's configuration phase of the boot sequence by the BIOS.

Table 4-20 lists the GPIO registers for the LPC47B357. Note that not all ports are listed as this table defines only the custom implementation of GPIO ports. Refer to SMC documentation for standard usage of unlisted GPIO ports.

Table 4-20. LPC47B357 GPIO Port Utilization					
GPIO	Function LPC4	/B35/ GPI Direction	GPIO	tilization Function	Direction
10	Board rev 1	I	42	ICH SCI	0
11	Board rev 0	i	43		NC
12		NC	44	Hood Lock	NC
13	PME-	ı	45	Hood Unlock	NC
14	WOL	NC	46	ICH SMI-	0
15	System ID 4 [1]	I	60	PCI Slot Reset	0
16	Processor Fan sense	I	61	AGP Slot Reset	0
17		NC	62	PWR Button In	1
20	Pri. IDE 80-pin Cable Detect	I	63	SLP S3	1
21	Sec. IDE 80-pin Cable Detect	I	64	SLP S5	1
22		NC	65	CPU Changed/Removed	0
23	System ID 2 [1]	I	66	PWR Button Out	0
24	BIOS fail for AOL	0	67	PS On	0
25	System ID 3 [1]	I	70	Remote Off	I
26	Processor Present		71	System ID 0 [1]	I
27		NC	72	System ID 1 [1]	I
30	PS LED Color Grn	0	73		NC
31	PS LED Blink	0	74	Chassis Fan Sense	1
32	Thermal Trip	I	75		NC
33	2 MB Media ID	I	76		NC
34	FWH Write Protect	0	85	Pwr SEL	0
35	FWH Reset	0	86	S3 3.3 VDC On	0
36	Diskette Motor B	0			
37	Diskette Select B	0			

NOTE:

NC = Not connected (not used).

[1] System ID (ID4..0) value for these systems = 00110 for desktops, = 00111 for minitowers.

4.9.3.2 I/O Controller Miscellaneous Functions

The systems covered in this guide utilize the following specialized functions built into the LPC 47B357 I/O Controller:

♦ Power/Hard drive LED control – The I/O controller provides color and blink control for the front panel LEDs used for indicating system events as listed below:

System Status	Power LED	HD LED
S0: System on (normal operation)	Steady green	Green w/HD activity
S1: Suspend	Blinks green @ 1 Hz	Off
S3: Suspend to RAM	Blinks green @ 1 Hz	Off
S4: Suspend to disk	Blinks green @ 0.5 Hz	Off
S5: Soft off	Off - clear	Off
Backplane board not seated	Steady red [1]	Steady red [1]
Processor not seated	Steady red [1]	Off
CPU thermal shutdown	Blinks red @ 4 Hz [1]	Off
ROM error	Blinks red @ 1 Hz [1]	Off
Power supply crowbar activated	Blinks red @ 0.5 Hz [1]	Off
System off	Off	Off

NOTE:

- ◆ I/O security The parallel, serial, and diskette interfaces may be disabled individually by software and the LPC47B357's disabling register locked. If the disabling register is locked, a system reset through a cold boot is required to gain access to the disabling (Device Disable) register.
- Processor present/speed detection One of the battery-back general-purpose inputs (GPI26) of the LPC47B357 detects if the processor has been removed. The occurrence of this event is passed to the ICH that will, during the next boot sequence, initiate the speed selection routine for the processor. The speed selection function replaces the manual DIP switch configuration procedure required on previous systems.
- ◆ Legacy/ACPI power button mode control The LPC47B357 receives the pulse signal from the system's power button and produces the PS On signal according to the mode (legacy or ACPI) selected. Refer to chapter 7 for more information regarding power management.

^[1] Minitower only. Desktop LED will be Off - clear.

Chapter 5 INPUT/OUTPUT INTERFACES

5.1 INTRODUCTION

This chapter describes the standard (i.e., system board) interfaces that provide input and output (I/O) porting of data and specifically discusses interfaces that are controlled through I/O-mapped registers. The following I/O interfaces are covered in this chapter:

Enhanced IDE interface (5.2)	page 5-1
Diskette drive interface (5.3)	page 5-4
Serial interfaces (5.4)	page 5-8
Parallel interface (5.5)	page 5-10
Keyboard/pointing device interface (5.6)	page 5-14
Universal serial bus interface (5.7)	page 5-20
Audio subsystem (5.8)	page 5-24
Network support (5.9)	page 5-30
	Diskette drive interface (5.3) Serial interfaces (5.4) Parallel interface (5.5) Keyboard/pointing device interface (5.6) Universal serial bus interface (5.7) Audio subsystem (5.8)

5.2 ENHANCED IDE INTERFACE

The enhanced IDE (EIDE) interface consists of primary and secondary controllers integrated into the 82801 ICH component of the chipset. Two 40-pin IDE connectors (one for each controller) are included on the system board. Each controller can be configured independently for the following modes of operation:

- ♦ Programmed I/O (PIO) mode CPU controls drive transactions through standard I/O mapped registers of the IDE drive.
- ♦ 8237 DMA mode CPU offloads drive transactions using DMA protocol with transfer rates up to 16 MB/s.
- Ultra ATA/66 mode Preferred bus mastering source-synchronous protocol providing transfer rates of 66 MB/s.

NOTE: These systems include 80-conductor data cables as required for UATA/66 modes.

5.2.1 IDE PROGRAMMING

The IDE interface is configured as a PCI device during POST and controlled through I/O-mapped registers at runtime.

Hard drive types not found in the ROM's parameter table are automatically configured as to (soft)type by DOS as follows:

Primary controller: drive 0, type 65; drive 1, type 66 Secondary controller: drive 0, type 68; drive 1, type 15

Non-DOS (non-Windows) operating systems may require using Setup (F10) for drive configuration.

5.2.1.1 IDE Configuration Registers

The IDE controller is configured as a PCI device with bus mastering capability. The PCI configuration registers for the IDE controller function (PCI device #31, function #1) are listed in Table 5-1.

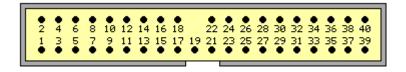
	Table 5-1. EIDE PCI Configuration Registers (82801, Device 31/Function 1)					
	EIDE PCI Configuration	Registers	(82801, De	vice 31/Function 1)		
PCI Conf.		Reset	PCI Conf.		Reset	
Addr.	Register	Value	Addr.	Register	Value	
00-01h	Vender ID	8086h	0F1Fh	Reserved	0's	
02-03h	Device ID	2411h	20-23h	BMIDE Base Address	1	
04-05h	PCI Command	0000h	2C, 2Dh	Subsystem Vender ID	0000h	
06-07h	PCI Status	0280h	2E, 2Fh	Subsystem ID	0000h	
08h	Revision ID	00h	303Fh	Reserved	0's	
09h	Programming	80h	40-43h	Pri./Sec. IDE Timing	0's	
0Ah	Sub-Class	01h	44h	Slave IDE Timing	00h	
0Bh	Base Class Code	01h	48h	Sync. DMA Control	00h	
0Dh	Master Latency Timer	00h	4A-4Bh	Sync. DMA Timing	0000h	
0Eh	Header Type	00h	54h	EIDE I/O Config.Register	00h	

NOTE:

Assume unmarked gaps are reserved and/or not used.

5.2.1.2 IDE Bus Master Control Registers

The IDE interface can perform PCI bus master operations using the registers listed in Table 5-2. These registers occupy 16 bytes of variable I/O space set by software and indicated by PCI configuration register 20h in the previous table.


	Table 5-2. IDE Bus Master Control Registers					
I/O Addr. Offset	Size (Bytes)	Register	Default Value			
00h	1	Bus Master IDE Command (Primary)	00h			
02h	1	Bus Master IDE Status (Primary)	00h			
04h	4	Bus Master IDE Descriptor Pointer (Pri.)	0000 0000h			
08h	1	Bus Master IDE Command (Secondary)	00h			
0Ah	2	Bus Master IDE Status (Secondary)	00h			
0Ch	4	Bus Master IDE Descriptor Pointer (Sec.)	0000 0000h			

NOTE:

Unspecified gaps are reserved, will return indeterminate data, and should not be written to.

5.2.2 IDE CONNECTOR

This system uses a standard 40-pin connector for the primary IDE device and connects (via a cable) to the hard drive installed in the right side drive bay. Note that some signals are re-defined for UATA/33 and UATA/66 modes, which require a special 80-conductor cable (supplied) designed to reduce cross-talk. Device power is supplied through a separate connector.

Figure 5-1. 40-Pin Primary IDE Connector (on system board).

	Table 5-3.					
	40-Pin Primary IDE Connector Pinout					
Pin	Signal	Description	Pin	Signal	Description	
_1	RESET-	Reset	21	DRQ	DMA Request	
2	GND	Ground	22	GND	Ground	
3	DD7	Data Bit <7>	23	IOW-	I/O Write [1]	
4	DD8	Data Bit <8>	24	GND	Ground	
5	DD6	Data Bit <6>	25	IOR-	I/O Read [2]	
6	DD9	Data Bit <9>	26	GND	Ground	
7	DD5	Data Bit <5>	27	IORDY	I/O Channel Ready [3]	
8	DD10	Data Bit <10>	28	CSEL	Cable Select	
9	DD4	Data Bit <4>	29	DAK-	DMA Acknowledge	
10	DD11	Data Bit <11>	30	GND	Ground	
11	DD3	Data Bit <3>	31	IRQn	Interrupt Request [4]	
12	DD12	Data Bit <12>	32	IO16-	16-bit I/O	
13	DD2	Data Bit <2>	33	DA1	Address 1	
14	DD13	Data Bit <13>	34	DSKPDIAG	Pass Diagnostics	
15	DD1	Data Bit <1>	35	DA0	Address 0	
16	DD14	Data Bit <14>	36	DA2	Address 2	
17	DD0	Data Bit <0>	37	CS0-	Chip Select	
18	DD15	Data Bit <15>	38	CS1-	Chip Select	
19	GND	Ground	39	HDACTIVE-	Drive Active (front panel LED) [5]	
20		Key	40	GND	Ground	

NOTES:

- [1] On UATA/33 and higher modes, re-defined as STOP.
- [2] On UATA/33 and higher mode reads, re-defined as DMARDY-. On UATA/33 and higher mode writes, re-defined as STROBE.
- [3] On UATA/33 and higher mode reads, re-defined as STROBE-.
- On UATA/33 and higher mode writes, re-defined as DMARDY-.
- [4] Primary connector wired to IRQ14, secondary connector wired to IRQ15.
- [5] Pin 39 is used for spindle sync and drive activity (becomes SPSYNC/DACT-) when synchronous drives are connected.

5.3 DISKETTE DRIVE INTERFACE

The diskette drive interface supports up to two diskette drives, each of which use a common cable connected to a standard 34-pin diskette drive connector. All models come standard with a 3.5-inch 1.44-MB diskette drive installed as drive A. The drive designation is determined by which connector is used on the diskette drive cable. The drive attached to the end connector is drive A while the drive attached to the second (next to the end) connector) is drive B.

On all models, the diskette drive interface function is integrated into the LPC47B357 super I/O component. The internal logic of the I/O controller is software-compatible with standard 82077-type logic. The diskette drive controller has three operational phases in the following order:

- Command phase The controller receives the command from the system.
- Execution phase The controller carries out the command.
- Results phase Status and results data is read back from the controller to the system.

The Command phase consists of several bytes written in series from the CPU to the data register (3F5h/375h). The first byte identifies the command and the remaining bytes define the parameters of the command. The Main Status register (3F4h/374h) provides data flow control for the diskette drive controller and must be polled between each byte transfer during the Command phase.

The Execution phase starts as soon as the last byte of the Command phase is received. An Execution phase may involve the transfer of data to and from the diskette drive, a mechnical control function of the drive, or an operation that remains internal to the diskette drive controller. Data transfers (writes or reads) with the diskette drive controller are by DMA, using the DRQ2 and DACK2- signals for control.

The Results phase consists of the CPU reading a series of status bytes (from the data register (3F5h/375h)) that indicate the results of the command. Note that some commands do not have a Result phase, in which case the Execution phase can be followed by a Command phase.

During periods of inactivity, the diskette drive controller is in a non-operation mode known as the Idle phase.

5.3.1 DISKETTE DRIVE PROGRAMMING

Programming the diskette drive interface consists of configuration, which occurs typically during POST, and control, which occurs at runtime.

5.3.1.1 Diskette Drive Interface Configuration

The diskette drive controller must be configured for a specific address and also must be enabled before it can be used. Address selection and enabling of the diskette drive interface are affected by firmware through the PnP configuration registers of the 47B357 I/O controller during POST.

The configuration registers are accessed through I/O registers 2Eh (index) and 2Fh (data) after the configuration phase has been activated by writing 55h to I/O port 2Eh. The diskette drive I/F is initiated by firmware selecting logical device 0 of the 47B357 using the following sequence:

- 1. Write 07h to I/O register 2Eh.
- 2. Write 00h to I/O register 2Fh (this selects the diskette drive I/F).
- 3. Write 30h to I/O register 2Eh.
- 4. Write 01h to I/O register 2Fh (this activates the interface).

Writing AAh to 2Eh deactivates the configuration phase. The diskette drive I/F configuration registers are listed in the following table:

	Table 5-4.					
	Diskette Drive Interface Con	nfiguration Register	S			
Index			Reset			
Address	Function	R/W	Value			
30h	Activate	R/W	01h			
60-61h	Base Address	R/W	03F0h			
70h	Interrupt Select	R/W	06h			
74h	DMA Channel Select	R/W	02h			
F0h	DD Mode	R/W	02h			
F1h	DD Option	R/W	00h			
F2h	DD Type	R/W	FFh			
F4h	DD 0	R/W	00h			
F5h	DD 1	R/W	00h			

For detailed configuration register information refer to the SMSC data sheet for the LPC47B357 I/O component.

5.3.1.2 Diskette Drive Interface Control

The BIOS function INT 13 provides basic control of the diskette drive interface. The diskette drive interface can be controlled by software through the LPC47B357's I/O-mapped registers listed in Table 5-5. The diskette drive controller of the LPC47B357 operates in the PC/AT mode in these systems.

Table 5-5.	
Diskette Drive Interface Cont	rol Registers

Pri.	Sec.	Partition	D 044
Addr.	Addr.	Register	R/W
3F0h	370h	Status Register A:	K
		<7> Interrupt pending	
		<6> Reserved (always 1)	
		<5> STEP pin status (active high)	
		<4> TRK 0 status (active high)	
		<3> HDSEL status (0 = side 0, 1 = side 1)	
		<2> INDEX status (active high)	
		<1> WR PRTK status (0 = disk is write protected)	
		<0> Direction (0 = outward, 1 = inward)	
3F1h	371h	Status Register B:	R
		<7,6> Reserved (always 1's)	
		<5> DOR bit 0 status	
		<4> Write data toggle	
		<3> Read data toggle	
		<2> WGATE status (active high)	
		<1,0> MTR 2, 1 ON- status (active high)	
3F2h	372h	Digital Output Register (DOR):	R/W
		<7,6> Reserved	
		<5,4> Motor 1, 0 enable (active high)	
		<3> DMA enable (active high)	
		<2> Reset (active low)	
		<1,0> Drive select (00 = Drive 1, 01 = Drive 2, 10 = Reserved, 11 = Tape drive)	
3F3h	373h	Tape Drive Register (available for compatibility)	R/W
3F4h	374h	Main Status Register (MSR):	R
01 111	07 111	<7> Request for master (host can transfer data) (active high)	
		<6> Transfer direction (0 – write, 1 = read)	
		<5> non-DMA execution (active high)	
		<4> Command busy (active high)	
		<3.2> Reserved	
		, ,	
		<1,0> Drive 1, 2 busy (active high)	١٨/
		Data Rate Select Register (DRSR):	W
		<7> Software reset (active high)	
		<6> Low power mode enable (active high)	
		<5> Reserved (0)	
		<42> Precompensation select (default = 000)	
		<1,0> Data rate select (00 = 500 Kb/s, 01 = 300 Kb/s, 10 = 250 Kb/s, 11 = 2/1	
		Mb/s)	
3F5h	375h	Data Register:	R/W
		<70> Data	
3F6h	376h	Reserved	
3F7h	377h	Digital Input Register (DIR):	R
		<7> DSK CHG status (records opposite value of pin)	
		<60> Reserved (0's)	
		Configuration Control Register (CCR):	W
		<72> Reserved	
		<1,0> Data rate select (00 = 500 Kb/s, 01 = 300 Kb/s, 10 = 250 Kb/s, 11 = 2/1	

NOTE: The most recently written data rate value to either DRSR or CCR will be in effect.

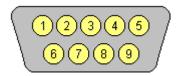
5.3.2 DISKETTE DRIVE CONNECTOR

This system uses a standard 34-pin connector (refer to Figure 5-2 and Table 5-6 for the pinout) for diskette drives. Drive power is supplied through a separate connector.



Figure 5-2. 34-Pin Diskette Drive Connector.

	Table 5-6. 34-Pin Diskette Drive Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description		
1	GND	Ground	18	DIR-	Drive head direction control		
2	LOW DEN-	Low density select	19	GND	Ground		
3	GND	Ground	20	STEP-	Drive head track step control		
4	MEDIA ID-	Media identification	21	GND	Ground		
5		(Key)	22	WR DATA-	Write data		
6	DRV 4 SEL-	Drive 4 select	23	GND	Ground		
7	GND	Ground	24	WR ENABLE-	Enable for WR DATA-		
8	INDEX-	Media index detect	25	GND	Ground		
9	GND	Ground	26	TRK 00-	Heads at track 00 indicator		
10	MTR 1 ON-	Activates drive motor	27	GND	Ground		
11	GND	Ground	28	WR PRTK-	Media write protect status		
12	DRV 2 SEL-	Drive 2 select	29	GND	Ground		
13	GND	Ground	30	RD DATA-	Data and clock read off disk		
14	DRV 1 SEL-	Drive 1 select	31	GND	Ground		
15	GND	Ground	32	SIDE SEL-	Head select (side 0 or 1)		
16	MTR 2 ON-	Activates drive motor	33	GND	Ground		
17	GND	Ground	34	DSK CHG-	Drive door opened indicator		


5.4 SERIAL INTERFACE

All models include two serial interfaces to transmit and receive asynchronous serial data with external devices. The serial interface function is provided by the LPC47B357 I/O controller component that includes two NS16C550-compatible UARTs.

Each UART supports the standard baud rates up through 115200, and also special high speed rates of 239400 and 460800 baud. The baud rate of the UART is typically set to match the capability of the connected device. While most baud rates may be set at runtime, **baud rates 230400 and 460800 must be set during the configuration phase.**

5.4.1 RS-232 INTERFACE

Each UART is associated with a DB-9 connector that complies with EIA standard RS-232-C. The DB-9 connector is shown in the following figure and the pinout of the connector is listed in Table 5-5.

Figure 5-3. Serial Interface Connector (Male DB-9 as viewed from rear of chassis)

	Table 5-7. DB-9 Serial Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description		
1	CD	Carrier Detect	6	DSR	Data Set Ready		
2	RX Data	Receive Data	7	RTS	Request To Send		
3	TX Data	Transmit Data	8	CTS	Clear To Send		
4	DTR	Data Terminal Ready	9	RI	Ring Indicator		
5	GND	Ground					

The standard RS-232-C limitation of 50 feet (or less) of cable between the DTE (computer) and DCE (modem) should be followed to minimize transmission errors. Higher baud rates may require shorter cables.

5.4.2 SERIAL INTERFACE PROGRAMMING

Programming the serial interfaces consists of configuration, which occurs during POST, and control, which occurs during runtime.

5.4.2.1 Serial Interface Configuration

The serial interface must be configured for a specific address range (COM1, COM2, etc.) and also must be activated before it can be used. Address selection and activation of the serial interface are affected through the PnP configuration registers of the LPC47B357 I/O controller.

The serial interface configuration registers are listed in the following table:

	Table 5-8.	
	Serial Interface Configuration Registers	
Index Address	Function	R/W
30h	Activate	R/W
60h	Base Address MSB	R/W
61h	Base Address LSB	R/W
70h	Interrupt Select	R/W
F0h	Mode Register	R/W

NOTE:

Refer to LPC47B357 data sheet for detailed register information.

5.4.2.2 Serial Interface Control

The BIOS function INT 14 provides basic control of the serial interface. The serial interface can be directly controlled by software through the I/O-mapped registers listed in Table 5-9.

		Table 5-9.	
		Serial Interface Control Registers	
COM1	COM2		
Addr.	Addr.	Register	R/W
3F8h	2F8h	Receive Data Buffer	R
		Transmit Data Buffer	W
		Baud Rate Divisor Register 0 (when bit 7 of Line Control Reg. Is set)	W
3F9h	2F9h	Baud Rate Divisor Register 1 (when bit 7 of Line Control Reg. Is set)	W
		Interrupt Enable Register	R/W
3FAh	2FAh	Interrupt ID Register	R
		FIFO Control Register	W
3FBh	2FBh	Line Control Register	R/W
3FCh	2FCh	Modem Control Register	R/W
3FDh	2FDh	Line Status Register	R
3FEh	2FEh	Modem Status	R

5.5 PARALLEL INTERFACE

These systems include a parallel interface for connection to a peripheral device that has a compatible interface, the most common being a printer. The parallel interface function is integrated into the LPC 47B357 I/O controller component and provides bi-directional 8-bit parallel data transfers with a peripheral device. The parallel interface supports three main modes of operation:

- ♦ Standard Parallel Port (SPP) mode
- ♦ Enhanced Parallel Port (EPP) mode
- ♦ Extended Capabilities Port (ECP) mode

These three modes (and their submodes) provide complete support as specified for an IEEE 1284 parallel port.

5.5.1 STANDARD PARALLEL PORT MODE

The Standard Parallel Port (SPP) mode uses software-based protocol and includes two sub-modes of operation, compatible and extended, both of which can provide data transfers up to 150 KB/s. In the compatible mode, CPU write data is simply presented on the eight data lines. A CPU read of the parallel port yields the last data byte that was written.

The following steps define the standard procedure for communicating with a printing device:

- 1. The system checks the Printer Status register. If the Busy, Paper Out, or Printer Fault signals are indicated as being active, the system either waits for a status change or generates an error message.
- 2. The system sends a byte of data to the Printer Data register, then pulses the printer STROBE signal (through the Printer Control register) for at least 500 ns.
- 3. The system then monitors the Printer Status register for acknowledgment of the data byte before sending the next byte.

In extended mode, a direction control bit (CTR 37Ah, bit <5>) controls the latching of output data while allowing a CPU read to fetch data present on the data lines, thereby providing bi-directional parallel transfers to occur.

The SPP mode uses three registers for operation: the Data register (DTR), the Status register (STR) and the Control register (CTR). Address decoding in SPP mode includes address lines A0 and A1.

5.5.2 ENHANCED PARALLEL PORT MODE

In Enhanced Parallel Port (EPP) mode, increased data transfers are possible (up to 2 MB/s) due to a hardware protocol that provides automatic address and strobe generation. EPP revisions 1.7 and 1.9 are both supported. For the parallel interface to be initialized for EPP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with EPP mode. If compatible, then EPP mode can be used. In EPP mode, system timing is closely coupled to EPP timing. A watchdog timer is used to prevent system lockup.

Five additional registers are available in EPP mode to handle 16- and 32-bit CPU accesses with the parallel interface. Address decoding includes address lines A0, A1, and A2.

5.5.3 EXTENDED CAPABILITIES PORT MODE

The Extended Capabilities Port (ECP) mode, like EPP, also uses a hardware protocol-based design that supports transfers up to 2 MB/s. Automatic generation of addresses and strobes as well as Run Length Encoding (RLE) decompression is supported by ECP mode. The ECP mode includes a bi-directional FIFO buffer that can be accessed by the CPU using DMA or programmed I/O. For the parallel interface to be initialized for ECP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with ECP mode. If compatible, then ECP mode can be used.

Ten control registers are available in ECP mode to handle transfer operations. In accessing the control registers, the base address is determined by address lines A2-A9, with lines A0, A1, and A10 defining the offset address of the control register. Registers used for FIFO operations are accessed at their base address + 400h (i.e., if configured for LPT1, then 378h + 400h = 778h).

The ECP mode includes several sub-modes as determined by the Extended Control register. Two submodes of ECP allow the parallel port to be controlled by software. In these modes, the FIFO is cleared and not used, and DMA and RLE are inhibited.

5.5.4 PARALLEL INTERFACE PROGRAMMING

Programming the parallel interface consists of configuration, which typically occurs during POST, and control, which occurs during runtime.

5.5.4.1 Parallel Interface Configuration

The parallel interface must be configured for a specific address range (LPT1, LPT2, etc.) and also must be enabled before it can be used. Address selection, enabling, and EPP/ECP mode parameters of the parallel interface are affected through the PnP configuration registers of the LPC47B357 I/O controller. Address selection and enabling are automatically done by the BIOS during POST but can also be accomplished with the Setup utility and other software. The parallel interface configuration registers are listed in the following table:

	Table 5-10. Parallel Interface Configuration Registers					
Index			Reset			
Address	Function	R/W	Value			
30h	Activate	R/W	00h			
60h	Base Address MSB	R/W	00h			
61h	Base Address LSB	R/W	00h			
70h	Interrupt Select	R/W	00h			
74h	DMA Channel Select	R/W	04h			
F0h	Mode Register	R/W	00h			
F1h	Mode Register 2	R/W	00h			

5.5.4.2 Parallel Interface Control

The BIOS function INT 17 provides simplified control of the parallel interface. Basic functions such as initialization, character printing, and printer status are provide by subfunctions of INT 17. The parallel interface is controllable by software through a set of I/O mapped registers. The number and type of registers available depends on the mode used (SPP, EPP, or ECP). Table 5-11 lists the parallel registers and associated functions based on mode.

Table 5-11. Parallel Interface Control Registers								
I/O Address	Register	SPP Mode Ports	EPP Mode Ports	ECP Mode Ports				
Base	Data	LPT1,2,3	LPT1,2	LPT1,2,3				
Base + 1h	Printer Status	LPT1,2,3	LPT1,2	LPT1,2,3				
Base + 2h	Control	LPT1,2,3	LPT1,2	LPT1,2,3				
Base + 3h	Address		LPT1,2					
Base + 4h	Data Port 0		LPT1,2					
Base + 5h	Data Port 1		LPT1,2					
Base + 6h	Data Port 2		LPT1,2					
Base + 7h	Data Port 3		LPT1,2					
Base + 400h	Parallel Data FIFO			LPT1,2,3				
Base + 400h	ECP Data FIFO	==		LPT1,2,3				
Base + 400h	Test FIFO			LPT1,2,3				
Base + 400h	Configuration Register A			LPT1,2,3				
Base + 401h	Configuration Register B			LPT1,2,3				
Base + 402h	Extended Control Register			LPT1,2,3				

Base Address:

LPT1 = 378h, LPT2 = 278h, LPT3 = 3BCh

5.5.5 PARALLEL INTERFACE CONNECTOR

Figure 5-4 and Table 5-12 show the connector and pinout of the parallel interface connector. Note that some signals are redefined depending on the port's operational mode.

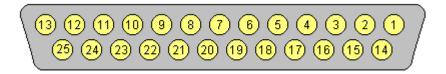


Figure 5-4. Parallel Interface Connector (Female DB-25 as viewed from rear of chassis)

Table 5-12. DB-25 Parallel Connector Pinout								
Pin	Signal	Function	Pin	Signal	Function			
1	STB-	Strobe / Write [1]	14	LF-	Line Feed [2]			
2	D0	Data 0	15	ERR-	Error [3]			
3	D1	Data 1	16	INIT-	Initialize Paper [4]			
4	D2	Data 2	17	SLCTIN-	Select In / Address. Strobe [1]			
5	D3	Data 3	18	GND	Ground			
6	D4	Data 4	19	GND	Ground			
7	D5	Data 5	20	GND	Ground			
8	D6	Data 6	21	GND	Ground			
9	D7	Data 7	22	GND	Ground			
10	ACK-	Acknowledge / Interrupt [1]	23	GND	Ground			
11	BSY	Busy / Wait [1]	24	GND	Ground			
12	PE	Paper End / User defined [1]	25	GND	Ground			
13	SLCT	Select / User defined [1]						

NOTES:

- [1] Standard and ECP mode function / EPP mode function
- [2] EPP mode function: Data Strobe
 - ECP modes: Auto Feed or Host Acknowledge
- [3] EPP mode: user defined
 - ECP modes:Fault or Peripheral Req.
- [4] EPP mode: Reset
 - ECP modes: Initialize or Reverse Req.

5.6 KEYBOARD/POINTING DEVICE INTERFACE

The keyboard/pointing device interface function is provided by the LPC47B357 I/O controller component, which integrates 8042-compatible keyboard controller logic (hereafter referred to as simply the "8042") to communicate with the keyboard and pointing device using bi-directional serial data transfers. The 8042 handles scan code translation and password lock protection for the keyboard as well as communications with the pointing device. This section describes the interface itself. The keyboard is discussed in the Appendix C.

5.6.1 KEYBOARD INTERFACE OPERATION

The data/clock link between the 8042 and the keyboard is uni-directional for Keyboard Mode 1 and bi-directional for Keyboard Modes 2 and 3. (These modes are discussed in detail in Appendix C). This section describes Mode 2 (the default) mode of operation.

Communication between the keyboard and the 8042 consists of commands (originated by either the keyboard or the 8042) and scan codes from the keyboard. A command can request an action or indicate status. The keyboard interface uses IRQ1 to get the attention of the CPU.

The 8042 can send a command to the keyboard at any time. When the 8042 wants to send a command, the 8042 clamps the clock signal from the keyboard for a minimum of 60 us. If the keyboard is transmitting data at that time, the transmission is allowed to finish. When the 8042 is ready to transmit to the keyboard, the 8042 pulls the data line low, causing the keyboard to respond by pulling the clock line low as well, allowing the start bit to be clocked out of the 8042. The data is then transferred serially, LSb first, to the keyboard (Figure 5-5). An odd parity bit is sent following the eighth data bit. After the parity bit is received, the keyboard pulls the data line low and clocks this condition to the 8042. When the keyboard receives the stop bit, the clock line is pulled low to inhibit the keyboard and allow it to process the data.

Figure 5-5. 8042-To-Keyboard Transmission of Code EDh, Timing Diagram

Control of the data and clock signals is shared by the 8042and the keyboard depending on the originator of the transferred data. Note that the clock signal is always generated by the keyboard. After the keyboard receives a command from the 8042, the keyboard returns an ACK code. If a parity error or timeout occurs, a Resend command is sent to the 8042.

Table 5-13 lists and describes commands that can be issued by the 8042 to the keyboard.

Table 5-13.					
804	12-To-Key	board Commands			
Command	Value	Description			
Set/Reset Status Indicators	EDh	Enables LED indicators. Value EDh is followed by an			
		option byte that specifies the indicator as follows:			
		Bits <73> not used			
		Bit $<2>$, Caps Lock (0 = off, 1 = on)			
		Bit $<1>$, NUM Lock $(0 = off, 1 = on)$			
		Bit $<0>$, Scroll Lock $(0 = off, 1 = on)$			
Echo	EEh	Keyboard returns EEh when previously enabled.			
Invalid Command	EFh/F1	These commands are not acknowledged.			
	h				
Select Alternate Scan Codes	F0h	Instructs the keyboard to select another set of scan codes			
		and sends an option byte after ACK is received:			
		01h = Mode 1			
		02h = Mode 2			
		03h = Mode 3			
Read ID	F2h	Instructs the keyboard to stop scanning and return two			
		keyboard ID bytes.			
Set Typematic Rate/Display	F3h	Instructs the keyboard to change typematic rate and delay			
		to specified values:			
		Bit <7>, Reserved - 0			
		Bits <6,5>, Delay Time			
		00 = 250 ms			
		01 = 500 ms			
		10 = 750 ms			
		11 = 1000 ms			
		Bits <40>, Transmission Rate:			
		00000 = 30.0 ms			
		00001 = 26.6 ms			
		00010 = 24.0 ms			
		00011 = 21.8 ms			
		11111 = 2.0 ms			
Enable	F4h	Instructs keyboard to clear output buffer and last			
		typematic key and begin key scanning.			
Default Disable	F5h	Resets keyboard to power-on default state and halts			
		scanning pending next 8042 command.			
Set Default	F6h	Resets keyboard to power-on default state and enable			
		scanning.			
Set Keys - Typematic	F7h	Clears keyboard buffer and sets default scan code set. [1]			
Set Keys - Make/Brake	F8h	Clears keyboard buffer and sets default scan code set. [1]			
Set Keys - Make	F9h	Clears keyboard buffer and sets default scan code set. [1]			
Set Keys - Typematic/Make/Brake	FAh	Clears keyboard buffer and sets default scan code set. [1]			
Set Type Key - Typematic	FBh	Clears keyboard buffer and prepares to receive key ID. [1]			
Set Type Key - Make/Brake	FCh	Clears keyboard buffer and prepares to receive key ID. [1]			
Set Type Key - Make	<u>FDh</u>	Clears keyboard buffer and prepares to receive key ID. [1]			
Resend	FEh	8042 detected error in keyboard transmission.			
Reset	FFh	Resets program, runs keyboard BAT, defaults to Mode 2.			

Note:

[1] Used in Mode 3 only.

5.6.2 POINTING DEVICE INTERFACE OPERATION

The pointing device (typically a mouse) connects to a 6-pin DIN-type connector that is identical to the keyboard connector both physically and electrically. The operation of the interface (clock and data signal control) is the same as for the keyboard. The pointing device interface uses the IRQ12 interrupt.

5.6.3 KEYBOARD/POINTING DEVICE INTERFACE PROGRAMMING

Programming the keyboard interface consists of configuration, which occurs during POST, and control, which occurs during runtime.

5.6.3.1 8042 Configuration

The keyboard/pointing device interface must be enabled and configured for a particular speed before it can be used. Enabling and speed parameters of the 8042 logic are affected through the PnP configuration registers of the LPC47B357 I/O controller. Enabling and speed control are automatically set by the BIOS during POST but can also be accomplished with the Setup utility and other software.

The keyboard interface configuration registers are listed in the following table:

Table 5-14.					
K	Ceyboard Interface Configuration Registers				
Index					
Address	Function	R/W			
30h	Activate	R/W			
70h	Primary Interrupt Select	R/W			
72h	Secondary Interrupt Select	R/W			
F0h	Reset and A20 Select	R/W			

5.6.3.2 8042 Control

The BIOS function INT 16 is typically used for controlling interaction with the keyboard. Subfunctions of INT 16 conduct the basic routines of handling keyboard data (i.e., translating the keyboard's scan codes into ASCII codes). The keyboard/pointing device interface is accessed by the CPU through I/O mapped ports 60h and 64h, which provide the following functions:

- Output buffer reads
- ♦ Input buffer writes
- Status reads
- Command writes

Ports 60h and 64h can be accessed using the IN instruction for a read and the OUT instruction for a write. Prior to reading data from port 60h, the "Output Buffer Full" status bit (64h, bit <0>) should be checked to ensure data is available. Likewise, before writing a command or data, the "Input Buffer Empty" status bit (64h, bit <1>) should also be checked to ensure space is available.

I/O Port 60h

I/O port 60h is used for accessing the input and output buffers. This register is used to send and receive data from the keyboard and the pointing device. This register is also used to send the second byte of multi-byte commands to the 8042 and to receive responses from the 8042 for commands that require a response.

A read of 60h by the CPU yields the byte held in the output buffer. The output buffer holds data that has been received from the keyboard and is to be transferred to the system.

A CPU write to 60h places a data byte in the input byte buffer and sets the CMD/ DATA bit of the Status register to DATA. The input buffer is used for transferring data from the system to the keyboard. All data written to this port by the CPU will be transferred to the keyboard **except** bytes that follow a multibyte command that was written to 64h

I/O Port 64h

I/O port 64h is used for reading the status register and for writing commands. A read of 64h by the CPU will yield the status byte defined as follows:

Bit	Function
74	General Purpose Flags.
3	CMD/DATA Flag (reflects the state of A2 during a CPU
	write).
	0 = Data
	1 = Command
2	General Purpose Flag.
1	Input Buffer Full. Set (to 1) upon a CPU write. Cleared by
	IN A, DBB instruction.
0	Output Buffer Full (if set). Cleared by a CPU read of the
	buffer.

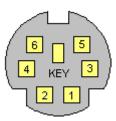

A CPU write to I/O port 64h places a command value into the input buffer and sets the CMD/DATA bit of the status register (bit <3>) to CMD.

Table 5-15 lists the commands that can be sent to the 8042 by the CPU. The 8042 uses IRQ1 for gaining the attention of the CPU.

	Table 5-15.			
	CPU Commands To The 8042			
Value	Command Description			
20h	Put current command byte in port 60h.			
60h	Load new command byte.			
A4h	Test password installed. Tests whether or not a password is installed in the 8042:			
	If FAh is returned, password is installed.			
	If F1h is returned, no password is installed.			
A5h	Load password. This multi-byte operation places a password in the 8042 using the following manner:			
	1. Write A5h to port 64h.			
	2. Write each character of the password in 9-bit scan code (translated) format to port 60h.			
	3. Write 00h to port 60h.			
A6h	Enable security. This command places the 8042 in password lock mode following the A5h			
	command. The correct password must then be entered before further communication with the 8042			
A 71-	is allowed.			
A7h	Disable pointing device. This command sets bit <5> of the 8042 command byte, pulling the clock			
A8h	line of the pointing device interface low. Enable pointing device. This command clears bit <5> of the 8042 command byte, activating the			
Aon	clock line of the pointing device interface.			
A9h	Test the clock and data lines of the pointing device interface and place test results in the output			
71011	buffer.			
	00h = No error detected			
	01h = Clock line stuck low			
	02h = Clock line stuck high			
	03h = Data line stuck low			
	04h = Data line stuck high			
AAh	Initialization. This command causes the 8042 to inhibit the keyboard and pointing device and places			
	55h into the output buffer.			
ABh	Test the clock and data lines of the keyboard interface and place test results in the output buffer.			
	00h = No error detected			
	01h = Clock line stuck low			
	02h = Clock line stuck high 03h = Data line stuck low			
	03h = Data line stuck low 04h = Data line stuck high			
ADh	Disable keyboard command (sets bit <4> of the 8042 command byte).			
AEh	Enable keyboard command (clears bit <4> of the 8042 command byte).			
C0h	Read input port of the 8042. This command directs the 8042 to transfer the contents of the input port			
	to the output buffer so that they can be read at port 60h.			
C2h	Poll Input Port High. This command directs the 8042 to place bits <74> of the input port into the			
	upper half of the status byte on a continous basis until another command is received.			
C3h	Poll Input Port Low. This command directs the 8042 to place bits <30> of the input port into the			
	lower half of the status byte on a continous basis until another command is received.			
D0h	Read output port. This command directs the 8042 to transfer the contents of the output port to the			
	output buffer so that they can be read at port 60h.			
D1h	Write output port. This command directs the 8042 to place the next byte written to port 60h into the			
501	output port (only bit <1> can be changed).			
D2h	Echo keyboard data. Directs the 8042 to send back to the CPU the next byte written to port 60h as if			
	it originated from the keyboard. No 11-to-9 bit translation takes place but an interrupt (IRQ1) is			
Dah	generated if enabled.			
D3h	Echo pointing device data. Directs the 8042 to send back to the CPU the next byte written to port			
D4h	60h as if it originated from the pointing device. An interrupt (IRQ12) is generated if enabled. Write to pointing device. Directs the 8042 to send the next byte written to 60h to the pointing device.			
E0h	Read test inputs. Directs the 8042 to transfer the test bits 1 and 0 into bits <1,0> of the output buffer.			
F0h-	Pulse output port. Controls the pulsing of bits <30> of the output port (0 = pulse, 1 = don't pulse).			
FFh	Note that pulsing bit <0> will reset the system.			
7 1 11	Troto that paroning bit 100 will root the dystoria.			

5.6.4 KEYBOARD/POINTING DEVICE INTERFACE CONNECTOR

These systems provide separate PS/2 connectors for the keyboard and pointing device. Both connectors are identical both physically and electrically. Figure 5-6 and Table 5-16 show the connector and pinout of the keyboard/pointing device interface connectors.

Figure 5-6. Keyboard or Pointing Device Interface Connector (as viewed from rear of chassis)

	Table 5-16. Keyboard/Pointing Device Connector Pinout							
		Keyboard/Pointin	ig Device C	onnector Pinc	out			
Pin	Signal	Description	Pin	Signal	Description			
1	DATA	Data	4	+ 5 VDC	Power			
2	NC	Not Connected	5	CLK	Clock			
3	GND	Ground	6	NC	Not Connected			

5.7 UNIVERSAL SERIAL BUS INTERFACE

The Universal Serial Bus (USB) interface provides asynchronous/isochronous data transfers of up to 12 Mb/s with compatible peripherals such as keyboards, printers, or modems. This high-speed interface supports hot-plugging of compatible devices, making possible system configuration changes without powering down or even rebooting systems.

NOTE: It is recommended to run the Windows 98 (or later) operating system when using USB peripherals, **especially a USB keyboard and USB mouse**. Problems may be encountered when using USB devices with a system running Windows 95, although some peripherals (such as a modem and/or a camera) may operate satisfactorily.

As shown in Figure 5-7, the USB interface is provided by the 82801 ICH component and a USB hub component. All models provide two front-panel accessible series-A USB ports. For more information on the USB interface refer to the following web site:

http://www.usb.org

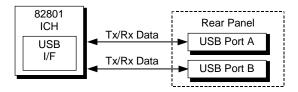


Figure 5-7. USB I/F, Block Diagram

5.7.1 USB DATA FORMATS

The USB I/F uses non-return-to-zero inverted (NRZI) encoding for data transmissions, in which a 1 is represented by no change (between bit times) in signal level and a 0 is represented by a change in signal level. Bit stuffing is employed prior to NRZ1 encoding so that in the event a string of 1's is transmitted (normally resulting in a steady signal level) a 0 is inserted after every six consecutive 1's to ensure adequate signal transitions in the data stream.

The USB transmissions consist of packets using one of four types of formats (Figure 5-8) that include two or more of seven field types.

- ♦ Sync Field 8-bit field that starts every packet and is used by the receiver to align the incoming signal with the local clock.
- ♦ Packet Identifier (PID) Field 8-bit field sent with every packet to identify the attributes (in. out, start-of-frame (SOF), setup, data, acknowledge, stall, preamble) and the degree of error correction to be applied.
- ◆ Address Field 7-bit field that provides source information required in token packets.
- ◆ Endpoint Field 4-bit field that provides destination information required in token packets.
- ♦ Frame Field 11-bit field sent in Start-of-Frame (SOF) packets that are incremented by the host and sent only at the start of each frame.
- ♦ Data Field 0-1023-byte field of data.
- ◆ Cyclic Redundancy Check (CRC) Field 5- or 16-bit field used to check transmission integrity.

Token Packet	Sync Field (8 bits)	PID Field (8 bits)	Addr. Field	Field Field		_	CRC Field (5 bits)	
SOF Packet	Sync Field (8 bits)	PID Field (8 bits)	Frame Fie (11 bits)		CRC F (5 bit			
Data Packet	Sync Field (8 bits)	PID Field (8 bits)	Data Field (0-1023 bytes)			CRC Fie (16 bits		
Handshake Packet	Sync Field (8 bits)	PID Field (8 bits)						

Figure 5-8. USB Packet Formats

Data is transferred LSb first. A cyclic redundancy check (CRC) is applied to all packets (except a handshake packet). A packet causing a CRC error is generally completely ignored by the receiver.

5.7.2 USB PROGRAMMING

Programming the USB interface consists of configuration, which typically occurs during POST, and control, which occurs at runtime.

5.7.2.1 USB Configuration

The USB interface functions as a PCI device (31) within the 82801 component (function 2) and is configured using PCI Configuration Registers as listed in Table 5-17.

Table 5-17. USB Interface Configuration Registers (Device 31, Function 2)							
PCI Config. Addr.	Register	Reset Value	PCI Config. Addr.	Register	Reset Value		
00, 01h	Vender ID	8086h	0Eh	Header Type	00h		
02, 03h	Device ID	2412h	20-23h	I/O Space Base Address	1		
04, 05h	PCI Command	0000h	2C, 2Dh	Sub. Vender ID	00h		
06, 07h	PCI Status	0280h	3Ch	Interrupt Line	00h		
08h	Revision ID	00h	3Dh	Interrupt Pin	03h		
09h	Programming I/F	00h	60h	Serial Bus Release No.	10h		
0Ah	Sub Class Code	03h	C0, C1h	USB Leg. Kybd./Ms. Cntrl.	2000h		
0Bh	Base Class Code	0Ch	C4h	USB Resume Enable	00h		

5.7.2.2 USB Control

The USB is controlled through I/O registers as listed in table 5-18.

Table 5-18. USB Control Registers				
I/O Addr. Offset	Register	Default Value		
00, 01h	Command	0000h		
02, 03h	Status	0000h		
04, 05h	Interupt Enable	0000h		
06, 07	Frame Number	0000h		
08, 0B	Frame List Base Address	0000h		
0Ch	Start of Frame Modify	40h		
10, 11h	Port 1 Status/Control	0080h		
12, 13h	Port 2 Status/Control	0080h		
18h	Test Data	00h		

5.7.3 USB CONNECTOR

The USB interface provides two series-A connectors on the rear panel.

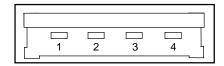


Figure 5-9. Universal Serial Bus Connector

Table 5-19. USB Connector Pinout						
Pin						
1	Vcc	+5 VDC	3	USB+	Data (plus)	
2	USB-	Data (minus)	4	GND	Ground	

5.7.4 USB CABLE DATA

The recommended cable length between the host and the USB device should be no longer than sixteen feet for full-channel (12 MB/s) operation, depending on cable specification (see following table).

	Table 5-20.					
	USB Cable Length	Data				
Conductor Size	Resistance	Maximum Length				
20 AWG	$0.036~\Omega$	16.4 ft (5.00 m)				
22 AWG	0.057 Ω	9.94 ft (3.03 m)				
24 AWG	0.091 Ω	6.82 ft (2.08 m)				
26 AWG	$0.145~\Omega$	4.30 ft (1.31 m)				
28 AWG	$0.232~\Omega$	2.66 ft (0.81 m)				

NOTE:

For sub-channel (1.5 MB/s) operation and/or when using sub-standard cable shorter lengths may be allowable and/or necessary.

The shield, chassis ground, and power ground should be tied together at the host end but left unconnected at the device end to avoid ground loops.

Color code:

 Signal
 Insulation color

 Data +
 Green

 Data White

 Vcc
 Red

 Ground
 Black

5.8 AUDIO SUBSYSTEM

The audio subsystem is integrated onto the system board of all models. Implementing both legacy and AC'97 design guidelines, the audio subsystem is designed to provide optimum sound. Key features of the audio subsystem include:

- ♦ AC'97 ver. 2.1 compliance
- ♦ Soft CD, DVD/AC-3 processing
- ♦ 16-bit stereo PCM input and output w/ up to 48 KHz sampling

5.8.1 FUNCTIONAL ANALYSIS

A block diagram of the audio subsystem is shown in Figure 5-10 and consists of the PC beep circuitry and the AC'97 audio circuitry.

The PC beep circuitry provides legacy PC audio support of audio tones produced by one of the counters of the interval timer of the 82801 ICH component. This circuitry (which includes the PCB-mounted piezo speaker) provides beep tones typically used for indicating system status during boot sequences. Note that the PC beep circuitry operates independently of the AC'97 audio circuitry.

The AC'97 audio circuitry uses the AC'97 Audio Controller of the 82801 ICH component to access and control an Analog Devices AD1885 Audio Codec, which provides the analog-to-digital (ADC) and digital-to-analog (DAC) conversions as well as the mixing functions. All control functions such as volume, audio source selection, and sampling rate are controlled through software over the PCI bus through the AC97 Audio Controller of the 82801 ICH. Control data and digital audio streams (record and playback) are transferred between the Audio Controller and the Audio Codec over the AC97 Link Bus.

The analog interfaces allowing connection to external audio devices include:

Mic In - This input uses a three-conductor (stereo) mini-jack that is specifically designed for connection of a condenser microphone with an impedance of 10-K ohms. This is the default recording input after a system reset.

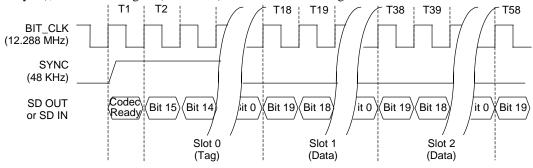
Line In - This input uses a three-conductor (stereo) mini-jack that is specifically designed for connection of a high-impedance (10k-ohm) audio source such as a tape deck.

Headphones/Line Out - This output uses a three-conductor (stereo) mini-jack that is designed for connecting a set of 16-ohm (min.) stereo headphones, a pair of powered speakers, or an amplifier.

NOTE: The signal at the Headphone/Line Out jack will not drive external speakers directly. Powered (amplified) speakers must be used.



Figure 5-10. Audio Subsystem Functional Block Diagram


5.8.2 AC97 AUDIO CONTROLLER

The AC97 Audio Controller is a PCI device (device 31/function 5) that is integrated into the 82801 ICH component and supports the following functions:

- Read/write access to audio codec registers
- ♦ 16-bit stereo PCM output @ up to 48 KHz sampling
- ♦ 16-bit stereo PCM input @ up to 48 KHz sampling
- Acoustic echo correction for microphone
- ♦ AC'97 Link Bus
- ♦ ACPI power management

5.8.3 AC97 LINK BUS

The audio controller and the audio codec communicate over a five-signal AC97 Link Bus (Figure 5-11). The AC97 Link Bus includes two serial data lines (SD OUT/SD IN) that transfer control and PCM audio data serially to and from the audio codec using a time-division multiplexed (TDM) protocol. The data lines are qualified by a 12.288 MHz BIT_CLK signal driven by the audio codec. Data is transferred in frames synchronized by the 48-KHz SYNC signal, which is derived from the clock signal and driven by the audio controller. The SYNC signal is high during the frame's tag phase then falls during T17and remains low during the data phase. A frame consists of one 16-bit tag slot followed by twelve 20-bit data slots. When asserted (typically during a power cycle), the RESET- signal (not shown) will reset all audio registers to their default values.

Slot	Description
0	Bit 15: Frame valid bit
	Bits 14-3: Slots 1-12 valid bits
	Bits 2-0: Codec ID
1	Command address: Bit 19, R/W; Bits 1812, reg. Index; Bits 110, reserved.
2	Command data
3	Bits 19-4: PCM audio data, left channel (SD OUT, playback; SD IN, record)
	Bits 3-0 all zeros
4	Bits 19-4: PCM audio data, right channel (SD OUT, playback; SD IN, record)
	Bits 3-0 all zeros
5	Modem codec data (not used in this system)
6-11	Reserved
12	I/O control

Figure 5-11. AC'97 Link Bus Protocol

5.8.4 AUDIO CODEC

The audio codec provides pulse code modulation (PCM) coding and decoding of audio information as well as the selection and/or mixing of analog channels. As shown in Figure 5-12, analog audio from a microphone, tape, or CD can be selected and, if to be recorded (saved) onto a disk drive, routed through an analog-to-digital converter (ADC). The resulting left and right PCM record data are muxed into a time-division-multiplexed (TDM) data stream (SD IN signal) that is routed to the audio controller. Playback (PB) audio takes the reverse path from the audio controller to the audio codec as SD OUT data and is decoded and processed by the digital-to-analog converter (DAC). The codec supports simultaneous record and playback of stereo (left and right) audio. The Sample Rate Generator may be set for sampling frequencies up to 48 KHz.

Analog audio may then be routed through 3D stereo enhancement processor or bypassed to the output selector (SEL). The integrated analog mixer provides the computer control-console functionality handling multiple audio inputs.

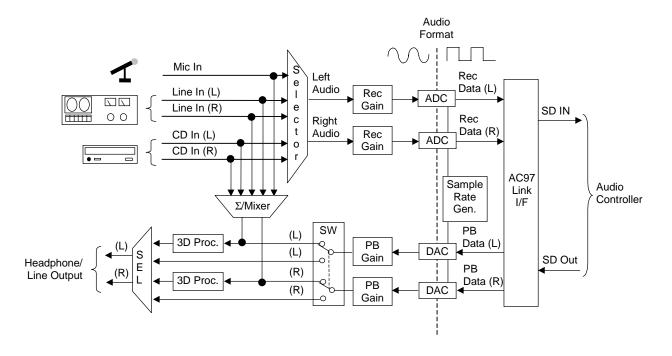


Figure 5-12. AD1885 Audio Codec Functional Block Diagram

All inputs and outputs are two-channel stereo except for the microphone input, which is inputted as a single-channel but mixed internally onto both left and right channels. The microphone input is the default active input. All block functions are controlled through index-addressed registers of the codec.

5.8.5 AUDIO PROGRAMMING

Audio subsystem programming consists configuration, typically accomplished during POST, and control, which occurs during runtime. The register maps are described in the following subsections.

5.8.5.1 Audio Configuration

The audio subsystem is configured according to PCI protocol through the AC'97 audio controller function of the 82801 ICH. Table 5-21 lists the PCI configuration registers of the audio subsystem.

	Table 5-21.							
	AC'97 Audio Controller							
	PCI Configuration Re	gisters (8	32801 De	vice 31/Function 5)				
PCI		Value	PCI	,	Value			
Conf.		on	Conf.		on			
Addr.	Register	Reset	Addr.	Register	Reset			
00-01h	Vender ID	8086h	14-17h	Native Audio Bus Mstr. Addr.	1			
02-03h	Device ID	2415h	18-1Bh	Reserved	1h			
04-05h	PCI Command	0000h	1C-2Bh	Reserved	1h			
06-07h	PCI Status	0280h	2C-2Dh	Subsystem Vender ID	0000h			
08h	Revision ID	XXh	2E-2Fh	Subsystem ID	0000h			
09h	Programming	00h	30-3Bh	Reserved				
0Ah	Sub-Class	01h	3Ch	Interrupt Line	00h			
0Bh	Base Class Code	04h	3Dh	Interrupt Pin	02h			
0Eh	Header Type	00h	3E-FFh	Reserved	0's			
10-13h	Native Audio Mixer Base Addr.	1						

5.8.5.2 Audio Control

The audio subsystem is controlled through a set of indexed registers that physically reside in the audio codec . The register addresses are decoded by the audio controller and forwarded to the audio codec over the AC97 Link Bus previously described. The audio codec's control registers (Table 5-22) are mapped into 64 kilobytes of variable I/O space.

Table 5-22. AC'97 Audio Codec Control Registers							
Offset Addr. / Register	Value On Reset	Offset Addr. / Register	Value On Reset	Offset Addr. / Register	Value On Reset		
00h Reset	0100h	14h Video Vol.	8808h	28h Ext. Audio ID.	0001h		
02h Master Vol.	8000h	16h Aux Vol.	8808h	2Ah Ext. Audio Ctrl/Sts	0000h		
04h Reserved	X	18h PCM Out Vol.	8808h	2Ch PCM DAC SRate	BB80h		
06h Mono Mstr. Vol.	8000h	1Ah Record Sel.	0000h	32h PCM ADC SRate	BB80h		
08h Reserved	X	1Ch Record Gain	8000h	34h Reserved	Х		
0Ah PC Beep Vol.	8000h	1Eh Reserved	Х	72h Reserved	Χ		
0Ch Phone In Vol.	8008h	20h Gen. Purpose	0000h	74h Serial Config.	7x0xh		
0Eh Mic Vol.	8008h	22h 3D Control	0000h	76h Misc. Control Bits	0404h		
10h Line In Vol.	8808h	24h Reserved	Х	7Ch Vender ID1	4144h		
12h CD Vol.	8808h	26h Pwr Mgnt.	000xh	7Eh Vender ID2	5340h		

5.8.6 AUDIO SPECIFICATIONS

The specifications of the audio subsystem are listed in Table 5-23.

Table 5-23.						
Audio Subsystem Specifications						
Paramemter	Measurement					
Sampling Rate	5.51 KHz to 44 KHz					
Resolution	16-bit					
Nominal Input Voltage:						
Mic In (w/+20 db gain)	.283 Vp-p					
Line In	2.83 Vp-p					
Impedance:						
Mic In	1 K ohms (nom)					
Line In	10 K ohms (min)					
Headphone/Line Out	16/800 ohms (min/max)					
Signal-to-Noise Ratio (input to Line Out)	90 db (nom)					
Max. Power Output (AD1885 codec)	(into 16 ohms)					
Input Gain Attenuation Range	46.5 db					
Master Volume Range	-94.5 db					
Frequency Response (codec)	20-20 KHz					

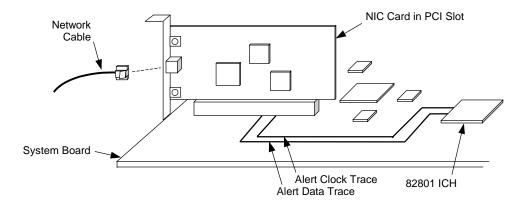
5.9 NETWORK SUPPORT

These systems include specific features to support optional network interface PCI cards that may be installed. These features, including network-alert functions with system-off support, are described in the following subsections.

5.9.1 PCI VER. 2.2 SUPPORT

These systems support the Power Management Event (PME-) signal and provided 3.3 VDC auxiliary power for all PCI slots. Network interface cards compliant with PCI specification ver. 2.2 may be installed to provided "system off" network support without additional cable connections. In a powered-down state the compliant network card receives 3.3 volts of auxiliary DC power on pin A14 of the PCI connector and uses PCI pin A19 for the PME- signal that is routed to general purpose input #13 of the LPC47B357 I/O controller. Network activity causing the NIC card to assert the PME- signal can be used to restart or "wake" the system from a suspend state.

NOTE: For auxiliary power to be available in a system-off condition the system unit must be plugged into a live AC outlet. Controlling unit power through a switchable power strip will, with the strip turned off, disable PME- functionality.


5.9.2 ALERT-ON-LAN SUPPORT

Alert-On-LAN (AOL) support allows a network interface controller (NIC) card to communicate the occurrence of certain events over a network even while the system unit is powered off. In a system-off (powered down) condition a NIC card receives auxiliary +3.3 VDC power (derived from the +5 VDC auxiliary power from the power supply assembly). Certain events will result in a compliant NIC card to transmit an appropriate pre-constructed message over the network to a system management console.

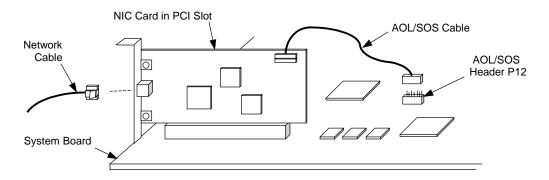
Reportable AOL events are listed in the following table:

Table 5-24.						
	AOL Events					
Event	Description					
BIOS Failure	System fails to boot successfully.					
OS Problem	System fails to load operating system after POST.					
Missing/Faulty Processor	Processor fails to fetch first instruction.					
Heartbeat	Indication of system's network presence (sent approximately every 30					
	seconds in normal operation).					

As shown in the following figure, support with an AOL-compliant NIC PCI card (such as the Intel PRO/100+ Management Adapter Solution) requires no auxiliary cable since the communication of alert events is handled through the PCI bus interface.

Figure 5-13. AOL Implementation (Generic Representation)

The 82801 ICH initiates event notification by transmitting an alert message over the SMBus-type Alert Clock/Alert Data interface to a NIC card. On these systems the Alert Clock/Alert Data signals are wired-Or'd with the SMBus signals and use the SDONEn/SBOn signals lines for routing to a NIC card on the PCI bus.


The ICH's alert message will be the result of a signal from a sensor (thermal or CPU state) or from the ICH's detection of the system's running status. Upon receiving the alert message from the ICH the NIC transmits the appropriate, pre-constructed message over the network.

The AOL implementation requirements are as follows:

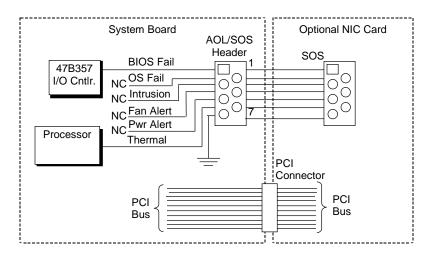
- 1. Intel PRO/100 VM Network Connection drivers 3.80 or later (available from Compaq).
- 2. Intel Alert-On-LAN Utilities, version 2.5 (available from Compaq).
- 3. Management console running one of the following:
 - a. HP OpenView Network Node Manager 6.x
 - b. Intel LANDesk Client Manager
 - c. Sample Application Console from the Intel AOL Utilities (item #2 above)

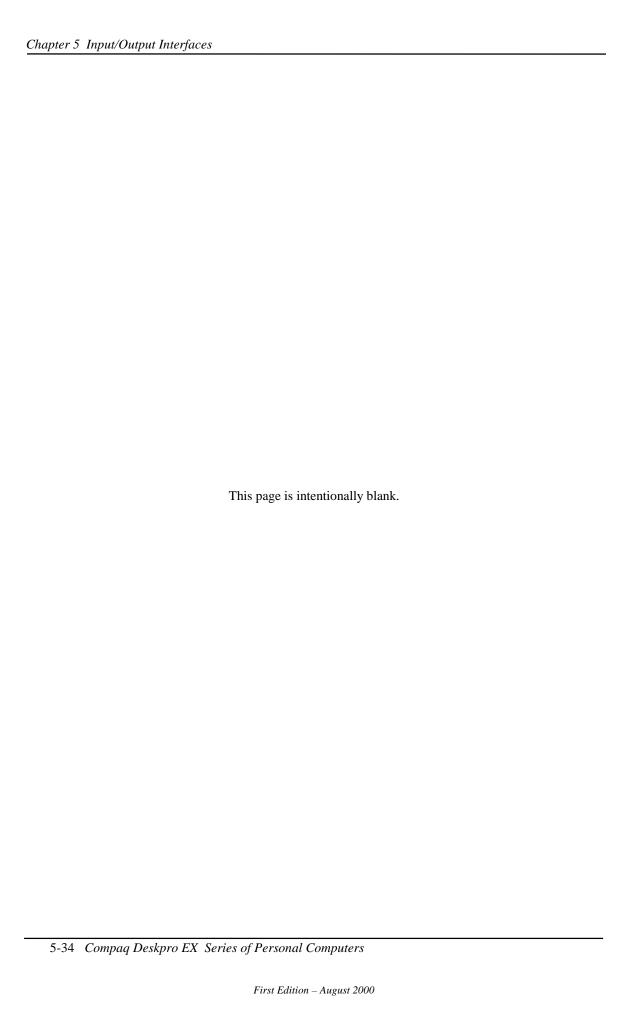
5.9.3 REMOTE SYSTEM ALERT SUPPORT

These systems provide Remote System Alert (RSA) support for such NIC cards as the 3Com 3C905C-TX NIC card. The RSA function is similar to AOL in that the unit provides, even while powered off, system status alert messages to a network console. However, NIC cards implementing the RSA method do **not** use the SMBus for receiving alert information and therefore require, in addition to the PCI connection, an auxiliary AOL/SOS cable connection with the system board (Figure 5-14).

Figure 5-14. Remote Sense Alert Implementation (Generic Representation)

In the Remote Sense Alert implementation, a NIC card receives event notification directly from the system's thermal sensors and the LPC47B357 I/O controller over an AOL/SOS cable connection (Figure 5-15). During system-off conditions the NIC card receives auxiliary power from the 3.3 VDC auxiliary power rail on the PCI bus.




Figure 5-15. RSA Logic, Block Diagram

Reportable RSA events are listed in the following table:

Table 5-25. Remote System Alert Events					
Event	Description				
BIOS Failure	System fails to boot successfully.				
Thermal Condition	CPU Thermal shutdown reported.				
Heartbeat	Indication of system's network presence (sent approximately every 30 seconds in normal operation).				

The current Remote System Alert implementation requirements are as follows:

- 1. 3Com Etherlink 3C905C-TX NIC.
- 2. 7-pin AOL/SOS cable.
- 3. 3Com EtherDisk Driver 5.x or later (available from Compaq).
- 4. Client-side utility software (included with driver).
- 5. Server-side utility software (available from Compaq).
- 6. Management console running one of the following:
 - a. HP OpenView Network Node Manager 6.x
 - b. Intel LANDesk Client Manager

Chapter 6 EMBEDDED GRAPHICS SUBSYSTEM

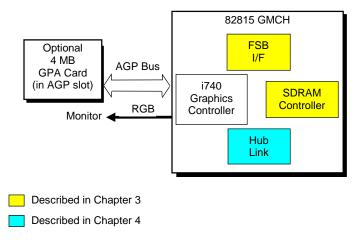
6.1 INTRODUCTION

These systems implement the Intel 815 Chipset, which includes the Intel 82815 GMCH component that integrates an Intel i740 graphics controller. These systems also provide an AGP slot to accommodate an alternative graphics adapter solution. This chapter describes the graphics controller integrated into the 82815 GMCH and is referred to as the Intel 815-based graphics subsystem.

For a description of separate AGP graphics cards that may be provided in some configurations refer to the appropriate appendix of this guide.

This chapter covers the following subjects:

♦	815-based graphics functional description (6.2)	page 6-2
•	815-based graphics programming (6.3)	page 6-5
•	Monitor power management (6.4)	page 6-5
♦	Monitor connector (6.5)	page 6-6
•	Upgrading 815-based graphics (6.6)	page 6-6


6.1.1 FEATURE SUMMARY

The Intel 815-based graphics subsystem includes the following features:

- ♦ Accelerated driver support for Windows 3.1/95/98/2000, Windows NT 4.0, OS/2
- ♦ MS ActiveMovie and Media Player support for Win95
- ♦ Direct 3D support
- ♦ MS Direct Draw 5/6 support
- ♦ AGP 4X interface
- ♦ DDC2B compliant
- ♦ Accelerator engine support for:
 - 3-ROP BitBLT
 - Line Draw
 - Color expansion
 - Video color conversion/scaling
 - Motion video
 - Triangle setup
- Upgradeable with either the addition of a 4-MB GPA card or an AGP graphics card

6.2 815-BASED GRAPHICS FUNCTIONAL DESCRIPTION

The Intel 815E chipset integrates the equivalent of an Intel i740 graphics controller into its 82815 GMCH component (Figure 6-1). The i740 graphics controller includes 2D and 3D accelerator engines working with a deeply-pipelined pre-processor. The controller supports perspective-correct texture mapping, bilinear and anisotropic Mip-mapping, Alpha blending, Gouraud shading, and fogging.

Figure 6-1. 815E-Based Graphics, Block diagram

The controller uses the AGP 4X interface and supports Type 1, Type 2, and Type 3 sideband cycles for a peak transfer rate of 1 MB/s. The AGP interface also allows the Intel graphics controller to use a portion of system memory for instructions, textures, and frame (display) buffering. Using a process called Dynamic Video Memory Technology (DVMT), the controller dynamically allocates display and texture memory amounts according to the needs of the application.

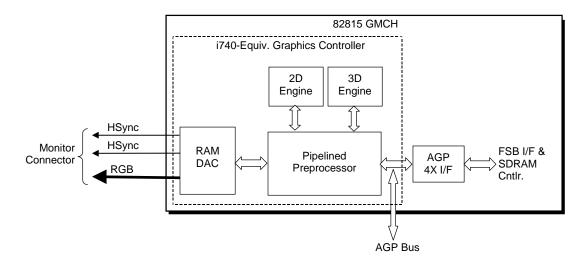


Figure 6-2. 82815 GMCH Integrated Graphics Subsystem

The integrated graphics controller includes special enhancements for 2D operations. Motion compensation logic is included to improve performance during software decoding of MPEG2 video. Hardware cursor and overlay engines relieve software processing and provide independent gamma correction, saturation, and brightness control. The 230-MHz RAMDAC can support a variable-scan rate monitor up to a maximum resolution of 1600 x 1200 with 256 colors. Video BIOS for the controller is held in the system BIOS ROM and copied into systems memory at runtime for maximum performance.

An optional 4-MB Graphics Performance Accelerator (GPA) card may be installed in the AGP slot to be used by the integrated controller as a display cache. The GPA card allows the graphics controller to simultaneously render graphics to the Z-buffer (in the display cache) while processing textures in a portion of system memory, increasing 3D performance substantially. The integrated i740 graphics controller uses, through the AGP I/F, a specific amount of system memory. This memory is allocated as follows:

Video BIOS – 512 or 1024 kilobytes. An OS report of available system memory will be the total amount installed LESS this amount.

Graphics Memory – Prior to the PV 4.x driver being loaded, the graphics memory will be one megabyte for supporting standard VGA modes. After driver load, memory allocation will be set by the Dynamic Video Memory Technology (DVMT) for rendering, Z-buffering, and displaying according to need and total system memory availability. The following table indicates the amount of memory allocated depending on operating system and memory availability.

OS Type and Sys. Mem. Amount	Total Graphics Memory w/o GPA Card	Total Graphics Memory w/4 MB GPA Card	
Windows 98 w/32 MB	6 MB	9 MB	
Windows 98 w/64 MB	10 MB	12 MB	
Windows 98 w/128 MB	10 MB	12 MB	
Windows NT 4.0 w/64 MB	9 MB	12 MB	
Windows NT 4.0 w/128 MB	9 MB	12 MB	
Windows 2000 w/64 MB	9 MB	12 MB	
Windows 2000 w/128 MB	10 MB	12 MB	

6.2.1 DISPLAY MODES

The Intel graphics controller supports the following 2D display modes:

Table 6-1.						
	815E-Based Gr	aphics Display Mode	es			
Resolution	Bits per pixel	Color Depth	Refresh Rate			
640 x 480	8	256	60, 70, 72, 75, 85			
640 x 480	16	65K	60, 70, 72, 75, 85			
640 x 480	24	16.7M	60, 70, 72, 75, 85			
720 x 480	8	256	75, 85			
720 x 480	16	65K	75, 85			
720 x 480	24	16.7M	75, 85			
720 x 576	8	256	60, 75, 85			
720 x 576	16	65K	60, 75, 85			
720 x 576	24	16.7M	60, 75, 85			
800 x 600	8	256	60, 70, 72, 75, 85			
800 x 600	16	65K	60, 70, 72, 75, 85			
800 x 600	24	16.7M	60, 70, 72, 75, 85			
1024 x 768	8	256	60, 70, 72, 75, 85			
1024 x 768	16	65K	60, 70, 72, 75, 85			
1024 x 768	24	16.7M	60, 70, 72, 75, 85			
1152 x 864	8	256	60, 70, 72, 75, 85			
1152 x 864	16	65K	60, 70, 72, 75, 85			
1152 x 864 [1]	24	16.7M	60, 70, 72, 75, 85			
1280 x 720	8	256	60, 75, 85			
1280 x 720	16	65K	60, 75, 85			
1280 x 720 [1]	24	16.7M	60, 75, 85			
1280 x 960	8	256	60, 75, 85			
1280 x 960	16	65K	60, 75, 85			
1280 x 960 [1]	24	16.7M	60, 75, 85			
1280 x 1024	8	256	60, 70, 72, 75, 85			
1280 x 1024	16	65K	60, 70, 72, 75, 85			
1280 x 1024 [1]	24	16.7M	60, 70, 75, 85			
1600 x 900	8	256	60, 75, 85			
1600 x 900	16	65K	60, 75, 85			
1600 x 1200	8	256	75			

NOTE:

[1] True color (24-bpp) mode support at these resolutions require the 4-MB GPA card.

6.3 815-BASED GRAPHICS PROGRAMMING

The 815-based graphics controller is configured using PCI configuration registers listed in Table 6-2.

Table 6-2. 815-Based Graphics Controller PCI Configuration Registers (GMCH, Function 2)

PCI			PCI		
Config.		Reset	Config.		Reset
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vendor ID	8086h	2E, 2Fh	Subsystem ID	0000h
02, 03h	Device ID	1132h	30-33h	Vid. BIOS Base Addr.	0's
04, 05h	Command	0004h	34h	Capabilities Pointer	DCh
06, 07h	Status	02B0h	3Ch	Interrupt Line	00h
08h	Revision ID	02h	3Dh	Interrupt Pin	01h
0A, 0Bh	Class Code	0003h	3Eh	Min. Grant	00h
0Eh	Header Type	01h	3Fh	Max. Latency	00h
0Fh	BIST	00h	DC, DDh	Pwr. Mgmt. Capabilities	0001h
10-13h	Memory Range Addr.	8	DE, DFh	Pwr. Mgmt. Capabilites	0022h
14-17h	Mem. Mapped Range Addr.	0's	E0, E1h	Pwr. Mgmt. Control	0000h
2C, 2Dh	Subsys. Vendor ID	0000h	E2-FFh	Reserved	

NOTE:

Assume unmarked locations/gaps as reserved. Refer to Intel documentation for detailed register descriptions.

The graphics controller is controlled through memory-mapped registers by the appropriate software driver.

6.4 MONITOR POWER MANAGEMENT CONTROL

The controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table 6-4 lists the monitor power conditions.

Table 6-4. Monitor Power Management Conditions						
HSYNC	VSYNC	Power Mode	Description			
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to tiemout, generates an SMI to initiate the Suspend mode.			
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.			
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.			

6.5 MONITOR CONNECTOR

A DB-15 connector is provided on the rear chassis for connection to an analog monitor. The pinout for this connector is shown in Figure 6-3 and Table 6-5.

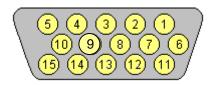


Figure 6-3. VGA Monitor Connector, (Female DB-15, as viewed from rear).

Table 6-5.							
		DB-15 Monito	r Conne	ctor Pinout			
Pin	Signal	Description	Pin	Signal	Description		
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]		
2	G	Blue Analog	10	GND	Ground		
3	В	Green Analog	11	NC	Not Connected		
4	NC	Not Connected	12	SDA	DDC2-B Data		
5	GND	Ground	13	HSync	Horizontal Sync		
6	R GND	Red Analog Ground	14	VSync	Vertical Sync		
7	G GND	Blue Analog Ground	15	SCL	DDC2-B Clock		
8	B GND	Green Analog Ground					

NOTES:

6.6 UPGRADING 815-BASED GRAPHICS

Upgrading the 815-based graphics is facilitated with either the addition of the GPA card (to improve the performance of the 82815 GMCH graphics controller) or with the installation of an AGP graphics adapter card. During POST, the BIOS will detect the presence of the AGP graphics adapter on the AGP bus and disable the 815-based graphics controller. Dual monitor support is possible by supplementing the 815-based graphics controller with a PCI graphics card.

^[1] Fuse automatically resets when excessive load is removed.

Chapter 7 POWER and SIGNAL DISTRIBUTION

7.1 INTRODUCTION

This chapter describes the power supply and method of general power and signal distribution. Topics covered in this chapter include:

◆ Power supply assembly/control (7.2) page 7-1
 ◆ Power distribution (7.3) page 7-5
 ◆ Signal distribution (7.4) page 7-8

7.1 POWER SUPPLY ASSEMBLY/CONTROL

This system features a power supply assembly that is controlled through programmable logic (Figure 7-1).

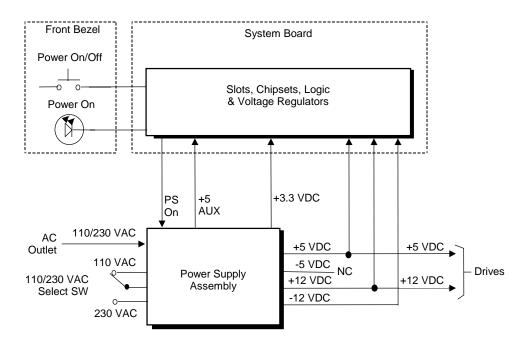


Figure 7–1. Power Distribution and Control, Block Diagram

7.1.1 POWER SUPPLY ASSEMBLY

The power supply assembly is contained in a single unit that features a selectable input voltage: 90-132 VAC and 180-264 VAC. Deskpro EX DT systems use a 145-watt supply while Deskpro EX MT systems employ a 200-watt supply. Tables 7-1 and 7-2 list the specifications of the power supplies.

Table 7-1. 145-Watt Power Supply Assembly Specifications (P/N 189801)								
Range/ Min. Current Max. Surge Max. Tolerance Loading [1] Current Current [2] Ripple								
Input Line Voltage:								
110 VAC Setting	90 - 132							
220 VAC Setting	VAC							
_	180-264							
	VAC							
Line Frequency	47 - 63 Hz							
Steady State Input (VAC) Current		==	4.0 A					
+3.3 VDC Output	+/- 5%	0.00 A	10.0 A	10.0 A	50 mV			
+5 VDC Output	+/- 5 %	1.30 A	15.0 A	15.0 A	50 mV			
+5 AUX Output	+/- 4 %	0.00 A	2.00 A	2.00 A	50 mV			
+12 VDC Output	+/- 5 %	0.10 A	4.00 A	5.00 A	120 mV			
-12 VDC Output	+/- 10 %	0.00 A	0.30 A	0.40 A	200 mV			

 \triangle

NOTE: Desktop units are specified as 120-watt systems even though a 145-watt power supply is used.

Table 7-2.								
200-Watt Power Supply Assembly Specifications (P/N 190769)								
Range/ Min. Current Max. Surge Max								
	Tolerance	Loading [1]	Current	Current [2]	Ripple			
Input Line Voltage:								
110 VAC Setting	90 - 132							
220 VAC Setting	VAC							
	180-264							
	VAC							
Line Frequency	47 - 63 Hz							
Steady State Input (VAC) Current			6.00 A					
+3.3 VDC Output	+/- 4%	1.40 A	14.0 A	14.0 A	50 mV			
+5 VDC Output	+/- 5 %	1.40 A	22.0 A	22.0 A	50 mV			
+5 AUX Output	+/- 4 %	0.10 A	2.00 A	2.00 A	50 mV			
+12 VDC Output	+/- 5 %	0.07 A	6.00 A	8.00 A	120 mV			
-12 VDC Output	+/- 10 %	0.00 A	0.30 A	0.30 A	200 mV			

7.1.2 POWER CONTROL

The power supply assembly is controlled digitally by the PS On signal (Figure 7-1). When PS On is asserted, the Power Supply Assembly is activated and all voltage outputs are produced. When PS On is de-asserted, the Power Supply Assembly is off and all voltages (except +5 AUX) are not generated. Note that the +5 AUX voltage is always produced as long as the system is connected to a live AC source.

7.1.2.1 Power Button

The PS On signal is typically controlled through the Power Button which, when pressed and released, applies a negative (grounding) pulse to the power control logic. The resultant action of pressing the power button depends on the state and mode of the system at that time and is described as follows:

System State	Pressed Power Button Results In:
Off	Negative pulse, of which the falling edge results in power control logic asserting PS On signal to Power Supply Assembly, which then initializes. ACPI four-second counter is not active.
On, ACPI Disabled	Negative pulse, of which the falling edge causes power control logic to de-assert the PS On signal. ACPI four-second counter is not active.
On, ACPI Enabled	Pressed and Released Under Four Seconds: Negative pulse, of which the falling edge causes power control logic to generate SMI-, set a bit in the SMI source register, set a bit for button status, and start four-second counter. Software should clear the button status bit within four seconds and the Suspend state is entered. If the status bit is not cleared by software in four seconds PS On is de-asserted and the power supply assembly shuts down (this operation is meant as a guard if the OS is hung). Pressed and Held At least Four Seconds Before Release: If the button is held in for at least four seconds and then released, PS On is negated, de-activating the power supply.

7.1.2.2 Power LED Indications

The Power LED is used to indicate system power status. The front panel (bezel) power LED provides a visual indication of key system conditions listed as follows:

Power LED	Condition
Steady green	Normal full-on operation (S0)
Blinking green @ 1 Hz	Suspend mode (S1)
Blinking green @ 2 Hz	Sleep (suspend to RAM) state (S3)
Blinking green @ 4 Hz	Sleep (suspend to Disk) state (S4)
Steady red (MT only)	Processor not seated
Blinks red @ 2 Hz (MT only)	Power supply crowbar activated
Blinks red @ 1 Hz (MT only)	BIOS ROM error
Blinks red @ 4 Hz (MT only)	Thermal condition: processor has overheated and shut down

7.1.2.3 Wake Up Events

The PS On signal can be activated with a power "wake-up" of the system due to the occurrence of a magic packet, serial port ring, or PCI power management (PME) event. These events can be individually enabled through the Setup utility to wake up the system from a sleep (low power) state.

NOTE: Wake-up functionality requires that certain circuits receive auxiliary power while the system is turned off. The system unit must be plugged into a live AC outlet for wake up events to function. **Using an AC power strip to control system unit power will disable wake-up event functionality.**

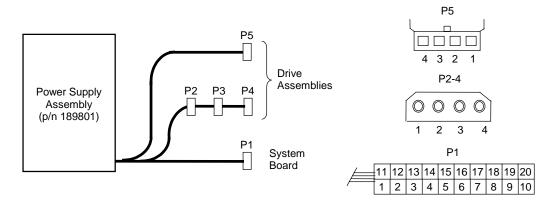
The wake up sequence for each event occurs as follows:

Wake-On-LAN

The network interface controller (NIC) can be configured for detection of a "Magic Packet" and wake the system up from sleep mode through the assertion of the PME- signal on the PCI bus. Refer to Chapter 5, "Network Support" for more information.

Modem Ring

A ring condition on serial port A (COM1) or serial port B (COM2) can be detected by the power control logic and, if so configured, cause the PS On signal to be asserted.


Power Management Event

A power management event that asserts the PME- signal on the PCI bus can be enabled to cause the power control logic to generate the PS On. Note that the PCI card must be PCI ver. 2.2 compliant to support this function.

7.2 POWER DISTRIBUTION

7.2.1 3.3/5/12 VDC DISTRIBUTION

The power supply assembly includes a multi-connector cable assembly that routes +3.3 VDC, +5 VDC, -5 VDC, +12 VC, and -12 VDC to the system board as well as to the individual drive assemblies. Figure 7-2 shows the power supply cabling for the Deskpro EX desktop (DT) models.

Conn. #	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Pin 10
P1	+3.3	+3.3	RTN	+5	RTN	+5	RTN		+5 AUX	+12
P1 [1]	+3.3	-12	RTN	PS On	RTN	RTN	RTN		+5	+5
P5	+5	GND	GND	+12						
P2-4	+12	GND	GND	+5						

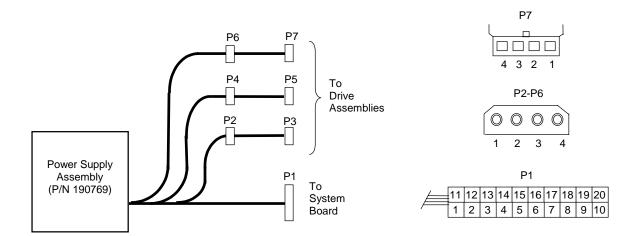
NOTES:

[1] This row represents pins 11-20 of connector P1.

All + and - values are VDC.

RTN = Return (signal ground)

GND = Power ground


RS = Remote sense

FO = Fan off

Not connected

Figure 7–2. Deskpro EX DT Power Cable Diagram

Figure 7-3 shows the power supply cabling for Deskpro EX minitower (MT) series units.

Conn. #	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Pin 10
P1	+3.3	+3.3	RTN	+5	RTN	+5	RTN	Pwr Gd	+5 AUX	+12
P1 [1]	+3.3	-12	RTN	PS On	RTN	RTN	RTN	-5	+5	+5
P7	+5	GND	GND	+12						_
P2-6	+12	GND	GND	+5						

NOTES:

[1] This row represents pins 11-20 of connector P1.


All + and - values are VDC. RTN = Return (signal ground) Pwr Gd = Power good GND = Power ground

Not connected

Figure 7–3. Deskpro EX MT Power Cable Diagram

7.2.2 LOW VOLTAGE DISTRIBUTION

Voltages less than 3.3 VDCincluding processor core (VccP) voltage are produced through regulator circuitry on the system board.

NOTE:

[1] VDDQ = 1.5 for AGP 4X cards (Type Det- grounded). = 3.3 for AGP 1X/2X cards (Type Det- left open).

Figure 7–4. Low Voltage Supply and Distribution Diagram

The VccP regulator produces the VccP (processor core) voltage according to the strapping of signals VID3..0 by the processor. The possible voltages available are listed as follows:

VID 30	VccP	VID 30	VccP
0000	2.05 VDC	1000	1.65 VDC
0001	2.00 VDC	1001	1.60 VDC
0010	1.95 VDC	1010	1.55 VDC
0011	1.90 VDC	1011	1.50 VDC
0100	1.85 VDC	1100	1.45 VDC
0101	1.80 VDC	1101	1.40 VDC
0110	1.75 VDC	1110	1.35 VDC
0111	1.70 VDC	1111	1.30 VDC

Refer to Chapter 3 for a listing of the core voltages set by the Celeron (Table 3-1) and Pentium III (Table 3-2) processors.

7.3 SIGNAL DISTRIBUTION

Figures 7-4 and 7-5 show general signal distribution between the main subassemblies of the system units.

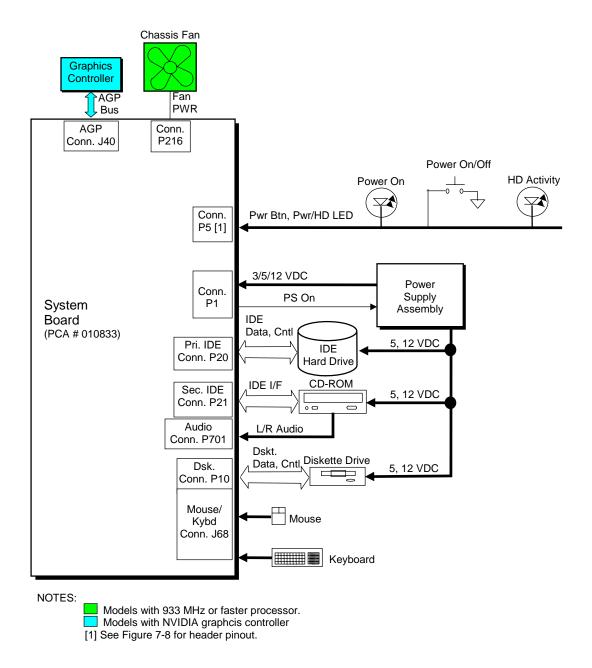
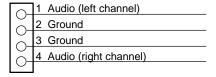
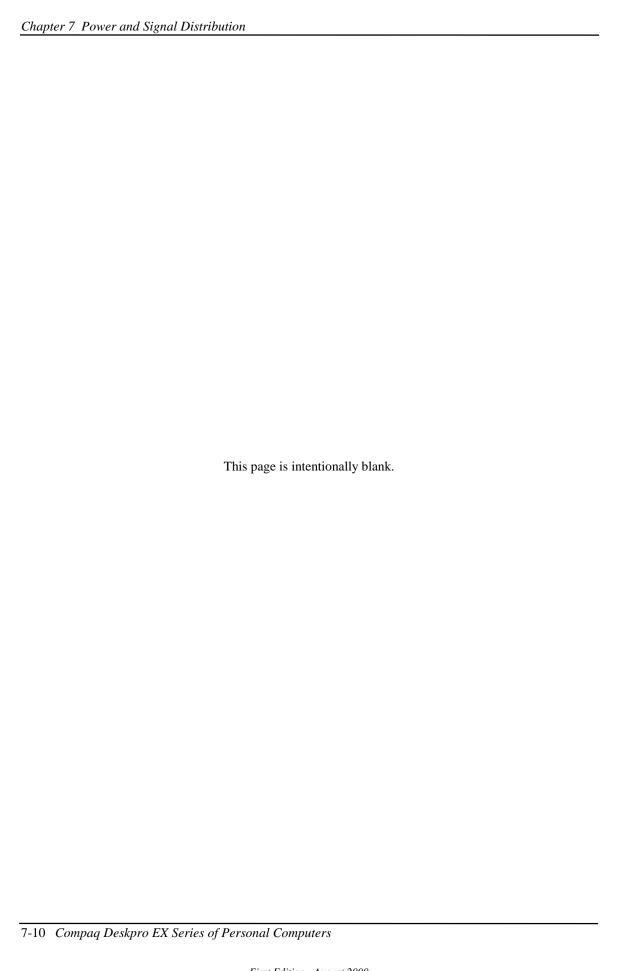



Figure 7–5. Signal Distribution Diagram (Typical Configuration)

Power Button/LED Header P5

HD LED Anode 1	\bigcirc	2 PS LED Anode
HD LED Cathode 3		4 PS LED Cathode
NC 5		6 PWR BTN
Master Reset 7		8 PWR BTN GND
+5 VDC 9		10 System ID
Not connected 11		12 GND
GND 13		
Not connected 15		16 +5 VDC
Not connected 17		18 Not connected


CD Audio Header P701

AOL/SOS Header P12

Figure 7–6. Header Pinouts

Chapter 8 BIOS ROM

8.1 INTRODUCTION

The Basic Input/Output System (BIOS) of the computer is a collection of machine language programs stored as firmware in read-only memory (ROM). The BIOS ROM includes such functions as Power-On Self Test (POST), PCI device initialization, Plug 'n Play support, power management activities, and the Setup utility. The firmware contained in the BIOS ROM supports the following operating systems and specifications:

- ♦ DOS 6.2
- ♦ Windows 3.1 (and Windows for Workgroups 3.11)
- ♦ Windows 95, 98, and 2000
- ♦ Windows NT 3.5 and 4.0
- ♦ OS/2 ver 2.1 and OS/2 Warp
- ♦ SCO Unix
- ♦ DMI 2.1
- ♦ Intel Wired for Management (WfM) ver. 2.2
- ♦ Alert-On-LAN (AOL) and Wake-On-LAN (WOL)
- ♦ ACPI and OnNow
- ♦ APM 1.2
- ♦ SMBIOS 2.3.1
- ♦ PC98/99 and NetPC
- ♦ Boot Integrity Services (BIS)
- ♦ Video BIOS on systems with 815E-based graphics or integrated nVIDIA AGP graphics
- ♦ Intel PXE boot ROM for the integrated LAN controller
- ♦ BIOS Boot Specification 1.01
- Enhanced Disk Drive Specification 3.0
- ◆ "El Torito" Bootable CD-ROM Format Specification 1.0
- ♦ ATAPI Removeable Media Device BIOS Specification 1.0

The BIOS ROM is a 512KB Intel Firmware Hub (or Firmware Hub-compatible) part. The runtime portion of the BIOS resides in a 128KB block from E0000h to FFFFFh. This chapter includes the following topics:

♦	ROM flashing (8.2)	page 8-2
•	Boot functions (8.3)	page 8-4
•	Setup utility (8.4)	page 8-6
•	Client management functions (8.5)	page 8-13
•	PnP support (8.6)	page 8-15
•	Power management functions (8.7)	page 8-17
•	USB legacy support (8.8)	page 8-24

8.2 ROM FLASHING

The system BIOS firmware is contained in a flash ROM device that can be re-written with BIOS code (using the ROMPAQ utility or a remote flash program) allowing easy upgrading, including changing the splash screen displayed during the POST routine.

8.2.1 UPGRADING

Upgrading the BIOS is not normally required but may be necessary if changes are made to the unit's operating system, hard drive, or processor. All BIOS ROM upgrades are available directly from Compaq. Flashing is done either locally with a ROMPaq diskette or remotely using the network boot function (described in the section 8.3.2).

This system includes 64 KB of write-protected boot block ROM that provides a way to recover from a failed remote flashing of the system BIOS ROM. If the BIOS ROM fails the flash check, the boot block code provides the minimum amount of support necessary to allow booting the system from the diskette drive and re-flashing the system ROM with a ROMPAQ diskette. Note that if an administrator password has been set in the system the boot block will prompt for this password by illuminating the caps lock keyboard LED and displaying a message if video support is available. A PS/2 keyboard must be used during bootblock operation.

Since video may not be available during the initial boot sequence the boot block routine uses the Num Lock, Caps Lock, and Scroll Lock LEDs of the PS/2 keyboard to communicate the status of the ROM flash as follows:

		Table 8-1.	
		Boot Block Cod	es
Num Lock LED	Cap Lock LED	Scroll Lock LED	Meaning
Off	On	Off	Administrator password required.
On	Off	Off	Boot failed. Reset required for retry.
Off	Off	On	Flash failed.
On	On	On	Flash complete.

8.2.2 CHANGEABLE SPLASH SCREEN

The splash screen (image displayed during POST) is stored in the BIOS ROM and may be replaced with another image of choice by using the Image Flash utility (Flashi.exe). The Image Flash utility allows the user to browse directories for image searching and pre-viewing. Background and foreground colors can be chosen from the selected image's palette.

The splash screen image requirements are as follows:

♦ Format: Windows bitmap with 4-bit RLE encoding

♦ Size: 424 (width) x 320 (height) pixels

♦ Colors: 16 (4 bits per pixel)

♦ File Size: < 64 KB

The Image Flash utility can be invoked at a command line for quickly flashing a known image as follows:

>\Flashi.exe [Image_Filename] [Background_Color] [Foreground_Color]

The utility checks to insure that the specified image meets the splash screen requirements listed above or it will not be loaded into the ROM.

8.3 BOOT FUNCTIONS

The BIOS supports various functions related to the boot process, including those that occur during the Power On Self-Test (POST) routine.

8.3.1 BOOT DEVICE ORDER

The default boot device order is as follows:

- 1. CD-ROM drive (EL Torito CD images)
- 2. Diskette drive (A)
- 3. Hard drive (C)
- 4. Network boot

The order can be changed in the ROM-based Setup utility (accessed by pressing F10 when so prompted during POST).

8.3.2 NETWORK BOOT (F12) SUPPORT

The BIOS supports booting the system to a network server. The function is accessed by pressing the F12 key when prompted at the lower right hand corner of the display during POST. Booting to a network server allows for such functions as:

- Flashing a ROM on a system without a functional operating system (OS).
- ♦ Installing an OS.
- Installing an application.

NOTE: The network boot function requires the installation of a compatible network interface controller card.

8.3.3 MEMORY DETECTION AND CONFIGURATION

This system uses the Serial Presence Detect (SPD) method of determining the installed DIMM configuration. The BIOS communicates with an EEPROM on each DIMM through the SMBus to obtain data on the following DIMM parameters:

- ♦ Presence
- ♦ Size
- ▶ Type
- ♦ Timing/CAS latency
- ♦ PC133 capability

NOTE: Refer to Chapter 3, "Processor/Memory Subsystem" for the SPD format and DIMM data specific to this system.

The BIOS performs memory detection and configuration with the following steps:

- 1. Program the buffer strength control registers based on SPD data and the DIMM slots that are populated.
- 2. Determine the common CAS latency that can be supported by the DIMMs.
- 3. Determine the memory size for each DIMM and program the GMCH accordingly.
- 4. Enable refresh
- 5. Determine if the memory configuration will allow for 133MHz memory operation and program the memory clock and GMCH (see note below)

NOTE: The presence of PC133-compliant DIMMS will be indicated by BIOS reading 75h from byte 9 and 64h or 85h from byte 126. For PC133 operation to occur the FSB of the processor must be running at 133 MHz and all installed DIMMs must be PC133-compliant and total no more than four "sides." Refer to Chapter 3 for more details on PC133 operation.

8.3.4 BOOT ERROR CODES

The BIOS provides visual and audible indications of a failed system boot by using the keyboard LEDs and the system speaker. The error conditions are as follows:

Table 8-2. Boot Error Codes			
Visual [1]	Audible	Meaning	
Num Lock LED blinks	1 short, 2 long beeps	System memory not present or incompatible.	
Scroll Lock LED blinks	2 long, 1 short beeps	Hardware failure before graphics initialization.	
Caps Lock LED blinks	1 long, 2 short beeps	Graphics controller not present or failed to initialize.	
Num, Caps, Scroll Lock LEDs blink	1 long, 3 short beeps	ROM failure.	
Num, Caps, Scroll Lock LEDs blink in sequence	none	Network service mode	

NOTE:

[1] Provided with PS/2 keyboard only.

8.4 SETUP UTILITY

The Setup utility (stored in ROM) allows the user to configure system functions involving security, power management, and system resources. The Setup utility is ROM-based and invoked when the F10 key is pressed during the time the F10 prompt is displayed in the lower right-hand corner of the screen during the POST routine. Highlights of the Setup utility are described in the following table.

NOTE: Support for Computer Setup options may vary depending on your specific hardware configuration.

Table 8-3. Setup Utility Functions			
File	System Information	Lists: Product name Processor type/speed/stepping Cache size (L1/L2) Installed memory size and frequency System ROM (includes family name and version) System board revision Chassis serial number Asset tracking number Integrated MAC for embedded, enabled NIC (if applicable)	
	About	Displays copyright notice.	
	Set Time and Date	Allows you to set system time and date.	
	Save to Diskette	Saves system configuration, including CMOS, to a blank, formatted 1.44-MB diskette.	
	Restore from Diskette	Restores system configuration, including CMOS, from a diskette.	
	Set Defaults and Exit	Restores factory default settings, which includes clearing any established passwords.	
	Ignore Changes and Exit	Exits Computer Setup without applying or saving any changes.	
	Save Changes and Exit	Saves changes to system configuration and exits Computer Setup.	
Storage	Device Configuration	Lists all installed storage devices. The following options appear when a device is selected: Diskette Type (For legacy diskette drives only) Identifies the highest capacity media type accepted by the diskette drive. Options are 3.5" 1.44 MB, 3.5" 720 KB, 5.25" 1.2 MB, 5.25" 360 KB, and Not Installed. Drive Emulation (LS-120 and ZIP drives only) Allows you to select a drive emulation type for a storage device. (For example, a Zip drive can be made bootable by selecting hard disk or diskette emulation.) Transfer Mode (IDE devices only) Specifies the active data transfer mode. Options (subject to device capabilities) are PIO 0, Max PIO, Enhanced DMA, Ultra DMA 0, and Max UDMA.	

Heading	Option	Description
Storage (continued)	Device Configuration (continued)	Translation Mode (IDE disks only) Lets you select the translation mode to be used for the device. This enables the BIOS to access disks partitioned and formatted on other systems and may be necessary for users of older versions of Unix (e.g., SCO Unix version 3.2). Options are Bit-Shift, LBA Assisted, User, and None.
		CAUTION: Ordinarily, the translation mode selected automatically by the BIOS should n be changed. If the selected translation mode not compatible with the translation mode that was active when the disk was partitioned and formatted, the data on the disk will be inaccessible.
		Translation Parameters (IDE Disks only) Allows you to specify the parameters (logical cylinders, heads, and sectors per track) used by the BIOS to translate disk I/O requests (from the operating system or an application) into terms the hard drive can accept. Logical cylinders may not exceed 1024. The number of heads may not exceed 256. The number of sectors per track may not exceed 63. These fields are only visible and changeable
		when the drive translation mode is set to User. Multisector Transfers (IDE ATA devices only) Specifies how many sectors are transferred per multi-sector PIO operation. Options (subject to device capabilities) are Disabled, 8, and 16.
		Quiet Drive (available on select drives only) Performance - Allows the drive to operate at maximum performance. Quiet (will not be displayed if not supported by drive)- Reduces noise from the drive during operation. When set to Quiet, the drive will not operate at maximum performance.
	Storage Options	Removable Media Boot Enables/disables ability to boot the system from removable media. Note: After saving changes to Removable Media Boot, the computer will restart. Turn the computer off, then on, manually.
		Removable Media Write Enables/disables ability to write data to removable media. Note: This feature applies only to legacy diskette, IDE LS- 120 Superdisk, and IDE PD-CD drives. Primary IDE Controller
		Allows you to enable or disable the primary IDE controller. Secondary IDE Controller Allows you to enable or disable the secondary IDE controller. Diskette MBR Validation Allows you to enable or disable strict validation of the diskette
		Master Boot Record (MBR). Note: If you use a bootable diskette image that you know to be valid, and it does not boot with Diskette MBR Validation enabled, you may need to disable this option in order to use the diskette.

Table 8-3. Se	etup Utility Functions Con	tinued
Heading	Option	Description
Storage (continued)	DPS Self-Test	Allows user to execute self-tests on IDE hard drives capable of performing the Drive Protection System (DPS) self-tests. Note: This selection will only appear when at least one drive capable of performing the IDE DPS self-tests is attached to the system
	Boot Order	Allows user to specify the order in which attached peripheral devices (such as diskette drive, hard drive, CD-ROM, or network interface card) are checked for a bootable operating system image. Each device on the list may be individually excluded from or included for consideration as a bootable operating system source. Note: MS-DOS drive lettering assignments may not apply after a non-MS-DOS operating system has started. To boot one time from a device other than the default device specified in Boot Order, restart the computer and press F9 when the F10=Setup message appears on the screen. When POST is completed, a list of bootable devices is displayed. Use the arrow keys to select a device and press the Enter key.
Security	Setup Password	Allows user to set and enable setup (administrator) password. Note: If the setup password is set, it is required to change Computer Setup options, flash the ROM, and make changes to certain plug and play settings under Windows. Also, this password must be set in order to use some Compaq remote security tools. See the <i>Troubleshooting Guide</i> for more information.
	Power-On Password	Allows user to set and enable power-on password. See the <i>Troubleshooting Guide</i> for more information.
	Password Options	Allows user to: Enable/disable network server mode. Note: This selection will appear only if a power-on password is set. Specify whether password is required for warm boot (CTRL+ALT+DEL). Note: This selection is available only when Network Server Mode is disabled. See the Desktop Management Guide for more information.
	Smart Cover	Allows user to: Enable/disable the Smart Cover Lock Enable/disable Smart Cover Sensor. Notify User alerts the user that the sensor has detected that the cover has been removed. Setup Password requires that the setup password be entered to boot the computer if the sensor detects that the cover has been removed. Feature supported on select models only. Refer to the Desktop Management Guide for more information.

Table 8-3. Se	tup Utility Functions Continued	
Heading	Option	Description
Security (continued)	Master Boot Record Security	Allows user to enable or disable Master Boot Record (MBR) Security. When enabled, the BIOS rejects all requests to write to the MBR on the current bootable disk. Each time the computer is powered on or rebooted, the BIOS compares the MBR of the current bootable disk to the previously-saved MBR. If changes are detected, you are given the option of saving the MBR on the current bootable disk, restoring the previously-saved MBR, or disabling MBR Security. You must know the setup password, if one is set. Note: Disable MBR Security before intentionally changing the formatting or partitioning of the current bootable disk. Several disk utilities (such as FDISK and FORMAT) attempt to update the MBR. If MBR Security is enabled and disk accesses are being serviced by the BIOS, write requests to the MBR are rejected, causing the utilities to report errors. If MBR Security is enabled and disk accesses are being serviced by the operating system, any MBR change will be detected by the BIOS during the next reboot, and an MBR Security warning message will be displayed.
	Save Master Boot Record	Saves a backup copy of the Master Boot Record of the current bootable disk. Note: Only appears if MBR Security is enabled.
	Restore Master Boot Record	Restores the backup Master Boot Record to the current bootable disk. Note: Only appears if all of the following conditions are true: MBR Security is enabled A backup copy of the MBR has been previously saved The current bootable disk is the same disk from which the backup copy of the MBR was saved.
	Device Security	Enables/disables serial, parallel, and USB ports and audio security.
	Network Service Boot	Enables/disables the computer's ability to boot from an operating system installed on a network server. (Feature available on NIC models only; the network controller must reside on the PCI bus or be embedded on the system board.)
	System IDs	Allows user to set: Asset tag (16-byte identifier) and Ownership Tag (80-byte identifier displayed during POST) - Refer to the Desktop Management guide for more information Chassis serial number or Universal Unique Identifier (UUID) number - If current number is invalid (these ID numbers are normally set in the factory and are used to uniquely identify the system) Keyboard locale setting (e.g., English or German) for System ID entry.

Heading	Option	Description
Power	Energy Saver	Allows user to set the energy saver mode (advanced, disable, or minimal). Note: In the minimal energy saver mode setting, the hard drive and system do not go into energy saver mode, but the setting allows you to press the power button to suspend the system. This option is not available under ACPI-enabled operating systems.
	Timeouts	Allows user to disable or manually select timeout values for the system and/or all attached IDE hard drives. Note: This option has no effect under ACPI-enabled operating systems. This selection will only appear when energy saver mode is set to advanced.
	Energy Saver Options	Allows user to set: Power button configuration (on/off or sleep/wake) under APM-enabled operating systems Power LED blink in suspend mode (enable/disable). This option is not available under ACPI-enabled operating systems. Note: Energy Saver Options will not appear if the energy saver mode is disabled.
Advanced (Advanced users only)	Power-On Options	Allows user to set: POST mode (QuickBoot, FullBoot, or FullBoot every 1-30 days) POST messages (enable/disable) Safe POST (enable/disable) F10 prompt (enable/disable) F12 prompt (enable/disable) Option ROM prompt (enable/disable) Remote wakeup boot sequence (remote server/local hard drive) UUID (Universal Unique Identifier) (enable/disable)
	Onboard Devices	Allows you to set resources for or disable onboard system devices (diskette controller, serial port, parallel port).
	PCI Devices	Lists currently installed PCI devices and their IRQ settings. Allows you to reconfigure IRQ settings for these devices or to disable them entirely.

Heading	ding Option Description	
Advanced (continued)	Bus Options	Allows user to enable or disable: PCI bus mastering, which allows a PCI device to take control of the PCI bus PCI VGA palette snooping, which sets the VGA palette snooping bit in PCI configuration space; this is only needed with more than one graphics controller installed PCI SERR# Generation.
	Device Options	Allows user to set: Printer mode (bi-directional, EPP & ECP, output only) Num Lock state at power-on (off/on) PME (power management event) wakeup events (enable/disable) Processor cache (enable/disable) Processor Number (enable/disable) for Pentium III processors. ACPI S3 support (enable/disable). S3 is an ACPI (advanced configuration and power interface) sleep state that some add-in hardware options may not support. AGP Aperture size (options vary depending on platform) allows you to modify the size of your AGP aperture size window.
	PCI VGA Configuration	Appears only if there are multiple PCI video adapters in the system. Allows users to specify which VGA controller will be the "boot" or primary VGA controller.

8.5 CLIENT MANAGEMENT FUNCTIONS

Table 8-4 lists the client management BIOS functions supported by the systems covered in this guide. These functions, designed to support intelligent manageability applications, are Compaq-specific unless otherwise indicated.

	Table 8-4.	
	Client Management Fund	ctions (INT15)
AX	Function	Mode
E800h	Get system ID	Real, 16-, & 32-bit Prot.
E813h	Get monitor data	Real, 16-, & 32-bit Prot.
E814h	Get system revision	Real, 16-, & 32-bit Prot.
E816h	Get temperature status	Real, 16-, & 32-bit Prot.
E817h	Get drive attribute	Real
E818h	Get drive off-line test	Real
E819h	Get chassis serial number	Real, 16-, & 32-bit Prot.
E820h [1]	Get system memory map	Real
E81Ah	Write chassis serial number	Real
E81Bh	Get hard drive threshold	Real
E81Eh	Get hard drive ID	Real
E827h	DIMM EEPROM Access	Real, 16-, & 32-bit Prot.

NOTE:

[1] Industry standard function.

All 32-bit protected-mode functions are accessed by using the industry-standard BIOS32 Service Directory. Using the service directory involves three steps:

- 1. Locating the service directory.
- 2. Using the service directory to obtain the entry point for the client management functions.
- 3. Calling the client management service to perform the desired function.

The BIOS32 Service Directory is a 16-byte block that begins on a 16-byte boundary between the physical address range of 0E0000h-0FFFFFh. The format is as follows:

Offset	No. Bytes	<u>Description</u>
00h	4	Service identifier (four ASCII characters)
04h	4	Entry point for the BIOS32 Service Directory
08h	1	Revision level
09h	1	Length of data structure (no. of 16-byte units)
0Ah	1	Checksum (should add up to 00h)
0Bh	5	Reserved (all 0s)

To support Windows NT an additional table to the BIOS32 table has been defined to contain 32-bit pointers for the DDC locations. The Windows NT extension table is as follows:

; Extension to BIOS SERVICE directory table (next paragraph)

```
"32OS"
                              ; number of entries in table
db
db
          "$DDC"
                              ; DDC POST buffer sig
dd
                              ; 32-bit pointer
dw
                              ; byte size
          "$ERB"
                              ; ESCD sig
db
                              ; 32-bit pointer
dd
dw
                              ; bytes size
```

The service identifier for client management functions is "\$CLM." Once the service identifier is found and the checksum verified, a FAR call is invoked using the value specified at offset 04h to retrieve the CM services entry point. The following entry conditions are used for calling the Desktop Management service directory:

INPUT:		
	EAX EBX (318) EBX (70) CS	= Service Identifier [\$CLM] = Reserved = Must be set to 00h
	CS	 Code selector set to encompass the physical page holding entry point as well as the immediately following physical page. It must have the same base. CS is execute/read.
	DS	 Data selector set to encompass the physical page holding entry point as well as the immediately following physical page. It must have the same base. DS is read only.
	SS	= Stack selector must provide at least 1K of stack space and be 32-bit.
	(I/O permissions m	ust be provided so that the BIOS can support as necessary)
OUTPUT	:	
	AL	= Return code:
		00h, requested service is present 80h, requested service is not present
		81h, un-implemented function specified in BL
		86h and CF=1, function not supported
	EBX	= Physical address to use as the selector BASE for the service
	ECX EDX	 Value to use as the selector LIMIT for the service Entry point for the service relative to the BASE returned in EBX
	LDA	- Littly point for the service relative to the BASE returned in EBA

The following subsections provide a brief description of key Client Management functions.

8.5.1 SYSTEM ID AND ROM TYPE

Applications can use the INT 15, AX=E800h BIOS function to identify the type of system. This function will return the system ID in the BX register. These systems have the following IDs and ROM family types:

System	System ID	ROM Family
Deskpro EX DT or MT	06C4h	686P0

The ROM family and version numbers can be verified with the Setup utility or the Compaq Insight Manager or Diagnostics applications.

8.5.2 EDID RETRIEVE

(Failure)

CF

AΗ

The BIOS function INT 15, AX=E813h is a tri-modal call that retrieves the VESA extended display identification data (EDID). Two subfunctions are provided: AX=E813h BH=00h retrieves the EDID information while AX=E813h BH=01h determines the level of DDC support. Input:

```
= E813h
         BH
                  = 00 Get EDID.
                  = 01 Get DDC support level
         BH
         If BH = 00 then
         DS:(E)SI = Pointer to a buffer (128 bytes) where ROM will return block
         If 32-bit protected mode then
         DS:(E)SI = Pointer to $DDC location
Output:
(Successful)
         If BH
                  = 0:
                  DS:SI=Buffer with EDID file.
         CX
                  = Number of bytes written
         CF
                  = 0
                  =00h Completion of command
         AΗ
         If BH
                  = 1:
                  = System DDC support
         BH
                    <0>=1 DDC1 support
                    <1>=1 DDC2 support
         BL
                  = Monitor DDC support
                    <0>=1 DDC1 support
                    <1>=1 DDC2 support
```

<2>=1 Screen blanked during transfer

= 86h or 87h

8.5.3 TEMPERATURE STATUS

The BIOS includes a function (INT15, AX=E816h) to retrieve the status of a system's interior temperature. This function allows an application to check whether the temperature situation is at a Normal, Caution, or Critical condition.

8.5.4 DRIVE FAULT PREDICTION

The Compaq BIOS directly supports Drive Fault Prediction for IDE-type hard drives. This feature is provided through two Client Management BIOS calls. Function INT 15, AX=E817h is used to retrieve a 512-byte block of drive attribute data while the INT 15, AX=E81Bh is used to retrieve the drive's warranty threshold data. If data is returned indicating possible failure then the following message is displayed:

"1720-SMART Hard Drive detects imminent failure"

8.6 PNP SUPPORT

The BIOS includes Plug 'n Play (PnP) support for PnP version 1.0A. Table 8-5 lists the PnP functions supported.

Table 8-5.			
	PnP BIOS Functions		
Function	Function Register		
00h	Get number of system device nodes		
01h	Get system device node		
02h	Set system device node		
03h	Get event		
04h	h Send message		
50h	Get SMBIOS Structure Information		
51h	Get Specific SMBIOS Structure		

The BIOS call INT 15, AX=E841h, BH=01h can be used by an application to retrieve the default settings of PnP devices for the user. The application should use the following steps for the display function:

- 1. Call PnP function 01(get System Device Node) for each devnode with bit 1 of the control flag set (get static configuration) and save the results.
- 2. Call INT 15, AX=E841h, BH=01h.
- 3. Call PnP "Get Static Configuration" for each devnode and display the defaults.
- 4. If the user chooses to save the configuration, no further action is required. The system board devices will be configured at the next boot. If the user wants to abandon the changes, then the application must call PnP function 02 (Set System Device Node) for each devnode (with bit 1 of the control flag set for static configuration) with the results from the calls made prior to invoking this function.

Compaq Deskpro EX Series of Personal Computers

8.6.1 SMBIOS

In support of the DMI specification the PnP functions 50h and 51h are used to retrieve the SMBIOS data. Function 50h retrieves the number of structures, size of the largest structure, and SMBIOS version. Function 51h retrieves a specific structure. This system supports SMBIOS version 2.3.1 and the following structure types:

Type	<u>Data</u>
0	BIOS Information
1	System Information
3	System Enclosure or Chassis
4	Processor Information
7	Cache Information
8	Port Connector Information
9	System Slots
13	BIOS Language Information
15	System Event Log Information
16	Physical Memory Array
17	Memory Devices
19	Memory Array Mapped Addresses
20	Memory Device Mapped Addresses
31	Boot Integrity Service Entry Point
32	System Boot Information
128	OEM Defined Structure with Intel Alert-On-LAN (AOL) Information

NOTE: System information on these systems is handled exclusively through the SMBIOS. The System Information Table (SIT) method (and it's associated BIOS functions) used on previous systems is no longer supported.

8.7 POWER MANAGEMENT FUNCTIONS

The BIOS ROM provides three types of power management support: independent PM support; APM support, and ACPI support.

8.7.1 INDEPENDENT PM SUPPORT

The BIOS can provide power management (PM) of the system independently from an operating system that doesn't support APM (including DOS, Unix, NT & older versions of OS/2). In the Independent PM environment the BIOS and hardware timers determine when to switch the system to a different power state. State switching is not reported to the OS.

8.7.1.1 Staying Awake In Independent PM

There are two "Time-out to Standy" timers used in independent PM: the System Timer and the IDE Hard Drive Timer.

System Timer

In POST, the BIOS enables a timer in the ICH that generates an SMI once per minute. When the BIOS detects the SMI it checks status bits in the ICH for device activity. If any of the device activity status bits are set at the time of the 1-minute SMI, BIOS resets the time-out minute countdown. The system timer can be configured through the Setup utility for counting down 0, 5, 10, 15, 20, 30, 40, 50, 60, 120, 180, or 240 minutes. The following devices are checked for activity:

- Keyboard
- Mouse
- ♦ Serial port(s)
- Parallel port
- ♦ IDE primary controller

NOTE: The secondary controller is NOT included. This is done to support autosense of a CD-ROM insertion (auto-run) in case Windows or NT is running. Note also that SCSI drive management is the responsibility of the SCSI driver. Any IDE hard drive access resets the hard drive timer.

IDE Hard Drive Timer

During POST, an inactivity timer each IDE hard drive is set to control hard drive spin down. Although this activity is independent of the system timer, the system will not go to sleep until the primary IDE controller has been inactive for the **system** time-out time. The hard drive timer can be configured through the Setup utility for being disabled or counting down 10, 15, 20, 30, 60, 120, 180, or 240 minutes, after which time the hard drive will spin down.

8.7.1.2 Going to Sleep in Independent PM

When a time-out timer expires, Standby for that timer occurs.

System Standby

When the system acquires the Standby mode the BIOS performs two duties:

- 1. Blanks the screen.
- 2. Turns off Vsync (to reduce CRT heater voltage).

Since the hard drive inactivity timer is in the drive and triggered by drive access, the system can be in Standby with the hard drives still spinning (awake).

NOTE: The BIOS does not turn the fan(s) off (as on previous products).

IDE Hard Drive Standby

During hard drive standby the platters stop spinning. Depending on drive type, some hard drives will also cut power to some of the drive electronics that are not needed. The drives can be in this state with the system still awake.

8.7.1.3 Suspend

Suspend is not supported in the Independent PM mode.

8.7.1.4 System OFF

When the system is turned Off but still plugged into a live AC outlet the NIC, ICH2, and I/O components continue to receive auxiliary power in order to power-up as the result of a Magic PacketTM being received over a network. Some NICs are able to wake up a system from Standby in PM, most require their Windows/NT driver to reset them after one wake-up.

8.7.1.5 Waking Up in Independent PM

Activity of either of the following devices will cause the system to wake up with the screen restored:

- ♦ Keyboard
- ♦ Mouse (if driver installed)

The hard drive will not spin up until it is accessed. Any hard drive access will cause it to wake up and resume spinning. Since the BIOS returns to the currently running software, it is possible for the drive to spin up while the system is in Standby with the screen blanked.

8.7.2 ACPI SUPPORT

This system meets the hardware and firmware requirements for being ACPI compliant. This system supports the following ACPI functions:

- ♦ PM timer
- Power button
- ♦ Power button override
- ♦ RTC alarm
- ♦ Sleep/Wake logic (S1,S3, S4 (Windows 2000), S5)
- ♦ C1 state (Halt)
- ♦ PCI Power Management Event (PME)

8.7.3 APM 1.2 SUPPORT

Advanced Power Management (APM) is an extension of power management. In APM, the O/S decides when a transition to another power state should occur. If going to Standby or Suspend, it notifies all APM-aware drivers requesting approval for the state change. If all drivers approve (the BIOS is not involved in this process) each is instructed to go to that state, then the BIOS is told to go to that state. All versions of Windows, later versions of OS/2 and Linux support APM. The BIOS ROM for these systems support APM 1.2

The APM functions are initialized when the O/S loads. An INT 15h call is made to see if APM is supported by the BIOS, and at what level (1.0, 1.1 or 1.2). After that, the O/S gets a 32-bit address from the BIOS ROM so it can subsequently make 32 bit protected mode calls to access the different APM functions in the ROM.

Table 8-6 lists all the APM calls that the O/S can make to the BIOS. These functions are the major difference between PM and APM.

	Table 8-6.		
APM BIOS Functions			
APM BIOS Function	Description		
APM Installation Check	Allows the O/S to determine if the system's BIOS supports the APM functionality and if so, which version of the specification it supports. The APM version number returned from this call is the highest level of APM supported by the BIOS.		
APM Real Mode Interface Connect	Establishes the cooperative interface between the O/S and the BIOS. The BIOS provides OEM-defined power management functionality before the interface is established. Once the interface is established, the BIOS and the O/S Driver coordinate power management activities. The BIOS rejects an interface connect request if any real or protected mode connection already exists.		
APM Protected Mode 16-bit	Initializes the 16-bit protected mode interface between the O/S and the BIOS. This interface allows a protected mode caller to invoke the BIOS functions without first switching into real or virtual-86 mode. This function must be invoked in real mode. This is not currently used by any O/S.		
APM Protected Mode 32-bit	linitializes the 32-bit protected mode interface between the O/S and the BIOS. This interface allows a protected mode O/S to invoke the BIOS functions without the need to first switch into real or virtual-86 mode. This function must be invoked in real mode.		
APM Interface Disconnect	Breaks the cooperative connection between the BIOS and the O/S, and returns control of the power management policy to the BIOS. Power management parameter values (timer values, enable/disable settings, etc.) in effect at the time of the disconnect remain in effect.		
CPU Idle	The O/S uses this call to tell BIOS that the system is idle.		
CPU Busy	Informs the BIOS that the O/S has determined that the system is now busy. The BIOS should restore the CPU clock rate to full speed.		
Set Power State	Sets the system or device specified in the power device ID into the requested power state.		
Enable/Disable Power Management	Enables or disables all APM BIOS automatic power management. When disabled, the BIOS does not automatically power manage devices, enter the Standby State, enter the Suspend State, or take power saving steps in response to CPU Idle calls.		
Restore Power-On Defaults	Re-initializes all power-on defaults.		
Get Power Status Get PM Event	This call returns the system current power status. Returns the next pending PM event, or indicates if no PM events are pending.		
Get Power State	Returns the device power state when a specific device ID is used.		
Enable/Disable Device PM	Enables or disables APM BIOS automatic power management for a specified device. When disabled, the APM BIOS does not automatically power manage the device.		
APM Driver Version	The O/S uses this call to indicate its level of APM support to the BIOS. The BIOS returns the APM connection version number.		
Engage/Disengage PM	Engages or disengages cooperative power management of the system or device.		
Get Capabilities	Returns the features which this particular APM 1.2 BIOS implementation supports.		
Get/Set/Disable Resume Timer	This call gets, sets, or disables the system resume timer.		
Enable/Disable Resume on Ring	Enables or disables the system's resume on ring indicator functionality. It also returns the enabled/disabled status.		
Enable/Disable Timer Based Request	Enables or disables the BIOS's generation of global Standby and global Suspend requests based on inactivity timers.		

8.7.3.1 Staying Awake in APM

There are two "Time-out to Standby" timers used in APM: the System Timer and the IDE had Drive Timer.

System Timer

In POST, the ROM enables a timer in the ICH that generates an SMI once per minute. When the ROM gets the SMI it checks status bits in the ICH for activity at any of the following devices:

- ♦ Keyboard
- ♦ Mouse
- ♦ Serial port(s)
- Parallel port
- ♦ IDE primary controller

NOTE: The secondary controller is NOT included in order to support auto-sense of a CD-ROM insertion (auto-run) in case Windows or NT is running. Note also that management of SCSI drives is the responsibility of the SCSI driver. Any IDE hard drive access resets the hard drive timer.

If any of the activity status bits are set when the ROM gets the 1-minute SMI, it resets its time-out minute countdown according to the value (0 (default), 5, 10, 15, 20, 30, 40, 50, 60, 120, 180, or 240 minutes) selected in the Setup utility (F10).

IDE Hard Drive Timer

During POST, an inactivity timer in the IDE hard drive controller is set to control hard drive spin down. This activity is independent of the system timer. The BIOS will not inform the O/S that it is time to go to sleep until there has been no IDE primary activity for the **system** time-out time. The IDE hard drive will spin down when its timer expires according to the countdown time (0 (disabled), 10, 15, 20, 30, 60, 120, 180, or 240 minutes) selected in the Setup utility (F10).

NOTE: The O/S (Win98 and later) can use the "Enable/Disable Timer Based Request" APM BIOS call to disable the system timer the BIOS uses so that the O/S can have direct control of the timing.

8.7.3.2 Going to Sleep in APM

There are three levels of system sleep in APM: System/Hard Drive Standby, System Suspend, and System Off.

System/Hard Drive Standby

System Standby is achieved only by a system timer time-out, at such time the following occurs:

- 1. All APM-aware device drivers put their respective devices into "Device Standby."
- 2. The O/S makes a BIOS call to go into System Standby.

NOTE: The BIOS ROM of these systems will not turn the fan(s) off as on previous systems).

If the hard drive timer times out due to inactivity the hard drive motor stops spinning the platters. Depending on drive type, some drives can cut power to some of the drive electronics that are not needed during standby. The drive(s) can be in this state with the system still awake. Since the hard drive timer is in the hard drive controller and triggered by drive access, the system can be in Standby with the hard drive(s) still spinning (awake).

System Suspend

System Suspend is invoked by pressing and releasing the power switch in **under** four seconds (pressing and holding the switch **longer** that four seconds will turn the system off). The system does **not** time-out from Standby into Suspend.

Upon invoking Suspend, the following actions occur:

- 1. All APM-aware device drivers put their associated devices into "Device Standby."
- 2. The O/S makes a BIOS call to go into Standby, and the BIOS:
 - a. Spins down the IDE drives
 - Halts the processor. The processor remains halted until the next 55ms tick from the RTC.
 - c. At the 55ms tick of the RTC the processor executes a BIOS routine to check to see if anything has happened to wake the system up. If not, the processor is halted again.
 - d. Steps B and C are repeated until a wake-up event occurs.

NOTE: These systems will not turn the fan(s) off as in previous systems.

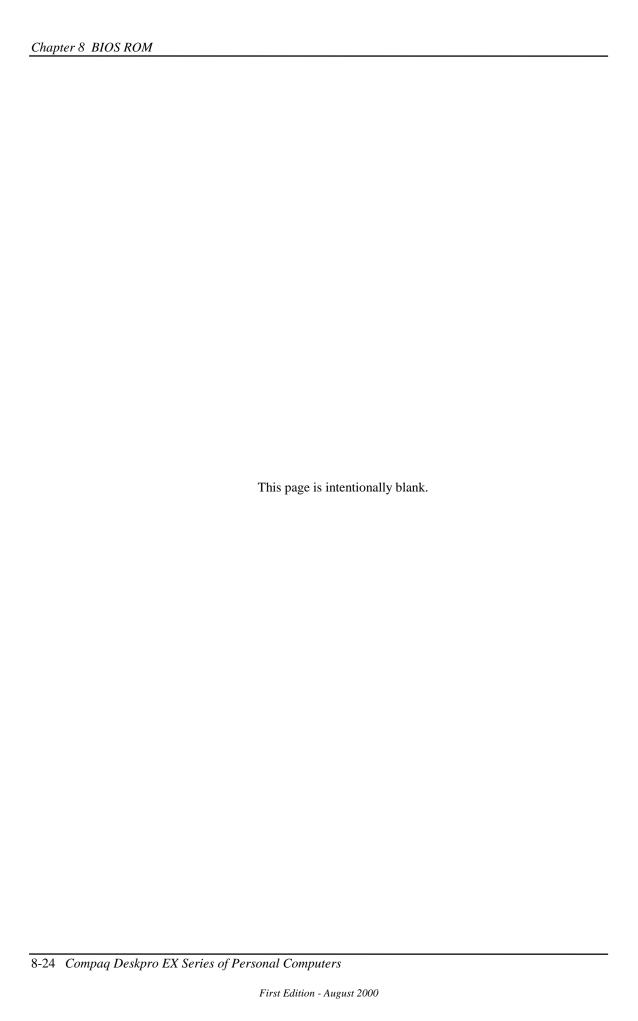
System OFF

There are two ways to turn the system off:

- 1. Press and hold the power button for longer than 4 seconds (**not** recommended unless absolutely necessary).
- 2. Software shut-down as directed by the O/S. This, being the normal procedure, allows a NIC driver to re-arm the NIC for a Magic PacketTM.

8.7.3.3 Waking Up in APM

Any of the following activities will cause the system to wake up:


- ♦ Keyboard
- ♦ Mouse
- ♦ Ring Indicate
- ♦ RTC alarm
- ♦ Magic Packet

The hard drive will not spin up until it is accessed. Any hard drive access will cause it to wake up and resume spinning. Since the BIOS returns to the currently running software, it is possible for the drive to spin up while the system is in Standby with the screen blanked.

8.8 USB LEGACY SUPPORT

The BIOS ROM checks the USB port, during POST, for the presence of a USB keyboard. This allows a system with only a USB keyboard to be used during ROM-based setup and also on a system with an OS that does not include a USB driver.

On such a system a keystroke will generate an SMI and the SMI handler will retrieve the data from the device and convert it to PS/2 data. The data will be passed to the keyboard controller and processed as in the PS/2 interface. Changing the delay and/or typematic rate of a USB keyboard though BIOS function INT 16 is not supported.

Appendix A ERROR MESSAGES AND CODES

A.1 INTRODUCTION

This appendix lists the error codes and a brief description of the probable cause of the error. **Note** that not all errors listed in this appendix may be applicable to a particular system model and/or configuration.

A.2 BEEP/KEYBOARD LED CODES

Table A-2.				
	Beep/Keyboard LED Codes			
Beeps	LED [1]	Probable Cause		
1 short, 2 long	NUM lock blinking	Base memory failure.		
1 long, 2 short	CAP lock blinking	Video/graphics controller failure.		
2 long, 1 short	Scroll lock blinking	System failure (prior to video initialization).		
1 long, 3 short	(None)	Boot block executing		
None	All three blink in sequence	Keyboard locked in network mode.		
None	NUM lock steady on	ROMPAQ diskette not present, bad, or drive not		
	•	ready.		
None	CAP lock steady on	Password prompt.		
None	All three blink together	ROM flash failed.		
None	All three steady on	Successful ROM flash.		

NOTE:

[1] PS/2 keyboard only.

A.3 POWER-ON SELF TEST (POST) MESSAGES

Table A-3.		
Power-On Self Test (POST) Messages		
Error Message	Probable Cause	
Invalid Electronic Serial Number	Chassis serial number is corrupt. Use Setup to enter a valid	
	number.	
Network Server Mode Active (w/o	System is in network mode.	
kybd)		
101-Option ROM Checksum Error	A device's option ROM has failed/is bad.	
102-system Board Failure	Failed ESCD write, A20, timer, or DMA controller.	
150-Safe POST Active	An option ROM failed to execute on a previous boot.	
162-System Options Not Set	Invalid checksum, RTC lost power, or invalid configuration.	
163-Time & Date Not Set	Date and time information in CMOS is not valid.	
164-Memory Size Error	Memory has been added or removed.	
201-Memory Error	Memory test failed.	
213-Incompatible Memory Module	BIOS detected installed DIMM(s) as being not compatible.	
216-Memory Size Exceeds Maximum	Installed memory exceeds the maximum supported by the system.	
301-Keyboard Error	Keyboard interface test failed (improper connection or stuck key).	
303-Keyboard Controller Error	Keyboard buffer failed empty (8042 failure or stuck key).	
304-Keyboard/System Unit Error	Keyboard controller failed self-test.	
404-Parallel Port Address Conflict	Current parallel port address is conflicting with another device.	
510-Slpash Image Corrupt	Corrupted splash screen image. Restore default image w/ROMPAQ.	
601-Diskette Controller Error	Diskette drive removed since previous boot.	
912-Computer Cover Removed Since	Cover (hood) removal has been detected by the Smart Cover	
Last System Start Up	Sensor.	
917-Expansion Riser Not Detected	Expansion (backplane) board not seated properly.	
1720-SMART Hard Drive Detects	SMART circuitry on an IDE drive has detected possible equipment	
Imminent Failure	failure.	
1721-SMART SCSI Hard Drive	SMART circuitry on a SCSI drive has detected possible equipment	
Detects Imminent Failure	failure.	
1801-Microcode Patch Error	A processor is installed for which the BIOS ROM has no patch.	
	Check for ROM update.	
1998-Master Boot Record Backup Has	Backup copy of the hard drive master boot record is corrupted. Use	
Been Lost	Setup to restore the backup from the hard drive.	
1999-Master Boot Record Has	If Master Boot Record Security is enabled, this message indicates	
Changed. Press Any Key To Enter	that the MBR has changed since the backup was made.	
Setup to Restore the MBR.	•	
2000-Master boot Record hard drive	The hard drive has been changed. Use Setup to create a backup of	
has changed	the new hard drive.	

A.4 SYSTEM ERROR MESSAGES (1xx-xx)

Table A-4.			
System Error Messages			
Message	Probable Cause	Message	Probable Cause
101	Option ROM error	110-01	Programmable timer load data test failed
102	System board failure (see note)	110-02	Programmable timer dynamic test failed
103	System board failure	110-03	Program timer 2 load data test failed
104-01	Master int. cntlr. test fialed	111-01	Refresh detect test failed
104-02	Slave int. cntlr. test failed	112-01	Speed test Slow mode out of range
104-03	Int. cntlr. SW RTC inoperative	112-02	Speed test Mixed mode out of range
105-01	Port 61 bit <6> not at zero	112-03	Speed test Fast mode out of range
105-02	Port 61 bit <5> not at zero	112-04	Speed test unable to enter Slow mode
105-03	Port 61 bit <3> not at zero	112-05	Speed test unable to enter Mixed mode
105-04	Port 61 bit <1> not at zero	112-06	Speed test unable to enter Fast mode
105-05	Port 61 bit <0> not at zero	112-07	Speed test system error
105-06	Port 61 bit <5> not at one	112-08	Unable to enter Auto mode in speed test
105-07	Port 61 bit <3> not at one	112-09	Unable to enter High mode in speed test
105-08	Port 61 bit <1> not at one	112-10	Speed test High mode out of range
105-09	Port 61 bit <0> not at one	112-11	Speed test Auto mode out of range
105-10	Port 61 I/O test failed	112-12	Speed test variable speed mode inop.
105-11	Port 61 bit <7> not at zero	113-01	Protected mode test failed
105-12	Port 61 bit <2> not at zero	114-01	Speaker test failed
105-13	No int. generated by failsafe timer	116-xx	Way 0 read/write test failed
105-14	NMI not triggered by failsafe timer	162-xx	Sys. options failed (mismatch in drive type)
106-01	Keyboard controller test failed	163-xx	Time and date not set
107-01	CMOS RAM test failed	164-xx	Memory size
108-02	CMOS interrupt test failed	199-00	Installed devices test failed
108-03	CMOS not properly initialized (int.test)		
109-01	CMOS clock load data test failed		
109-02	CMOS clock rollover test failed		
109-03	CMOS not properly initialized (clk test)		

NOTE: A 102 message code may be caused by one of a variety of processor-related problems that may be solved by replacing the processor, although system board replacement may be needed.

A.5 MEMORY ERROR MESSAGES (2xx-xx)

	Table A-5.
	Memory Error Messages
Message	Probable Cause
200-04	Real memory size changed
200-05	Extended memory size changed
200-06	Invalid memory configuration
200-07	Extended memory size changed
200-08	CLIM memory size changed
201-01	Memory machine ID test failed
202-01	Memory system ROM checksum failed
202-02	Failed RAM/ROM map test
202-03	Failed RAM/ROM protect test
203-01	Memory read/write test failed
203-02	Error while saving block in read/write test
203-03	Error while restoring block in read/write test
204-01	Memory address test failed
204-02	Error while saving block in address test
204-03	Error while restoring block in address test
204-04	A20 address test failed
204-05	Page hit address test failed
205-01	Walking I/O test failed
205-02	Error while saving block in walking I/O test
205-03	Error while restoring block in walking I/O test
206-xx	Increment pattern test failed
207-xx	ECC failure
210-01	Memory increment pattern test
210-02	Error while saving memory during increment pattern test
210-03	Error while restoring memory during increment pattern test
211-01	Memory random pattern test
211-02	Error while saving memory during random memory pattern test
211-03	Error while restoring memory during random memory pattern test
213-xx	Incompatible DIMM in slot x
214-xx	Noise test failed
215-xx	Random address test

A.6 KEYBOARD ERROR MESSAGES (30x-xx)

	Table A-6. Keyboard Error Messages			
Message	Probable Cause	Message	Probable Cause	
300-xx	Failed ID test	303-05	LED test, LED command test failed	
301-01	Kybd short test, 8042 self-test failed	303-06	LED test, LED command test failed	
301-02	Kybd short test, interface test failed	303-07	LED test, LED command test failed	
301-03	Kybd short test, echo test failed	303-08	LED test, command byte restore test failed	
301-04	Kybd short test, kybd reset failed	303-09	LED test, LEDs failed to light	
301-05	Kybd short test, kybd reset failed	304-01	Keyboard repeat key test failed	
302-xx	Failed individual key test	304-02	Unable to enter mode 3	
302-01	Kybd long test failed	304-03	Incorrect scan code from keyboard	
303-01	LED test, 8042 self-test failed	304-04	No Make code observed	
303-02	LED test, reset test failed	304-05	Cannot /disable repeat key feature	
303-03	LED test, reset failed	304-06	Unable to return to Normal mode	
303-04	LED test, LED command test failed			

A.7 PRINTER ERROR MESSAGES (4xx-xx)

Table A-7.				
	Printer Error Messages			
Message	Probable Cause	Message	Probable Cause	
401-01	Printer failed or not connected	402-11	Interrupt test, data/cntrl. reg. failed	
402-01	Printer data register failed	402-12	Interrupt test and loopback test failed	
402-02	Printer control register failed	402-13	Int. test, LpBk. test., and data register failed	
402-03	Data and control registers failed	402-14	Int. test, LpBk. test., and cntrl. register failed	
402-04	Loopback test failed	402-15	Int. test, LpBk. test., and data/cntrl. reg.	
			failed	
402-05	Loopback test and data reg. failed	402-16	Unexpected interrupt received	
402-06	Loopback test and cntrl. reg. failed	402-01	Printer pattern test failed	
402-07	Loopback tst, data/cntrl. reg. failed	403-xx	Printer pattern test failed	
402-08	Interrupt test failed	404-xx	Parallel port address conflict	
402-09	Interrupt test and data reg. failed	498-00	Printer failed or not connected	
402-10	Interrupt test and control reg. failed			

A.8 VIDEO (GRAPHICS) ERROR MESSAGES (5xx-xx)

Table A-8. Video (Graphics) Error Messages				
Message	Message Probable Cause Message Probable Cause			
501-01	Video controller test failed	508-01	320x200 mode, color set 0 test failed	
502-01	Video memory test failed	509-01	320x200 mode, color set 1 test failed	
503-01	Video attribute test failed	510-01	640x200 mode test failed	
504-01	Video character set test failed	511-01	Screen memory page test failed	
505-01	80x25 mode, 9x14 cell test failed	512-01	Gray scale test failed	
506-01	80x25 mode, 8x8 cell test failed	514-01	White screen test failed	
507-01	40x25 mode test failed	516-01	Noise pattern test failed	

See Table A-14 for additional graphics messages.

A.9 DISKETTE DRIVE ERROR MESSAGES (6xx-xx)

Table A-9.				
	Diskette Drive Error Messages			
Message		Message	Probable Cause	
6xx-01	Exceeded maximum soft error limit	6xx-20	Failed to get drive type	
6xx-02	Exceeded maximum hard error limit	6xx-21	Failed to get change line status	
6xx-03	Previously exceeded max soft limit	6xx-22	Failed to clear change line status	
6xx-04	Previously exceeded max hard limit	6xx-23	Failed to set drive type in ID media	
6xx-05	Failed to reset controller	6xx-24	Failed to read diskette media	
6xx-06	Fatal error while reading	6xx-25	Failed to verify diskette media	
6xx-07	Fatal error while writing	6xx-26	Failed to read media in speed test	
6xx-08	Failed compare of R/W buffers	6xx-27	Failed speed limits	
6xx-09	Failed to format a tract	6xx-28	Failed write-protect test	
6xx-10	Failed sector wrap test			
600-xx = Dis	kette drive ID test	609-xx = Disl	kette drive reset controller test	
601-xx = Dis	skette drive format	610	0-xx = Diskette drive change line test	
602-xx = Dis	skette read test	61 ⁻	1-xx = Pri. diskette drive port addr. conflict	
603-xx = Dis	603-xx = Diskette drive R/W compare test 612-xx = Sec. diskette drive port addr. conflict			
604-xx = Dis	604-xx = Diskette drive random seek test 694-00 = Pin 34 not cut on 360-KB driv			
605-xx = Dis	505-xx = Diskette drive ID media 697-00 = Diskette type error			
606-xx = Dis	skette drive speed test	698-00 = Drive speed not within limits		
	kette drive wrap test	699-00 = Drive/media ID error (run Setup)		
	skette drive write-protect test		(, , , , , , , , , , , , , , , , , , ,	

A.10 SERIAL INTERFACE ERROR MESSAGES (11xx-xx)

Table A-10. Serial Interface Error Messages				
Message	Probable Cause	Message	Probable Cause	
1101-01	UART DLAB bit failure	1101-13	UART cntrl. signal interrupt failure	
1101-02	Line input or UART fault	1101-14	DRVR/RCVR data failure	
1101-03	Address line fault	1109-01	Clock register initialization failure	
1101-04	Data line fault	1109-02	Clock register rollover failure	
1101-05	UART cntrl. signal failure	1109-03	Clock reset failure	
1101-06	UART THRE bit failure	1109-04	Input line or clock failure	
1101-07	UART Data RDY bit failure	1109-05	Address line fault	
1101-08	UART TX/RX buffer failure	1109-06	Data line fault	
1101-09	Interrupt circuit failure	1150-xx	Comm port setup error (run Setup)	
1101-10	COM1 set to invalid INT	1151-xx	COM1 address conflict	
1101-11	COM2 set to invalid INT	1152-xx	COM2 address conflict	
1101-12	DRVR/RCVR cntrl. signal failure	1155-xx	COM port address conflict	

A.11 MODEM COMMUNICATIONS ERROR MESSAGES (12xx-xx)

Table A-11.				
Serial Interface Error Messages				
Message	Probable Cause	Message	Probable Cause	
1201-XX	Modem internal loopback test	1204-03	Data block retry limit reached [4]	
1201-01	UART DLAB bit failure	1204-04	RX exceeded carrier lost limit	
1201-02	Line input or UART failure	1204-05	TX exceeded carrier lost limit	
1201-03	Address line failure	1204-06	Time-out waiting for dial tone	
1201-04	Data line fault	1204-07	Dial number string too long	
1201-05	UART control signal failure	1204-08	Modem time-out waiting for remote response	
1201-06	UART THRE bit failure	1204-09	Modem exceeded maximum redial limit	
1201-07	UART DATA READY bit failure	1204-10	Line quality prevented remote response	
1201-08	UART TX/RX buffer failure	1204-11	Modem time-out waiting for remote	
			connection	
1201-09	Interrupt circuit failure	1205-XX	Modem auto answer test	
1201-10	COM1 set to invalid inturrupt	1205-01	Time-out waiting for SYNC [5]	
1201-11	COM2 set to invalid	1205-02	Time-out waiting for response [5]	
1201-12	DRVR/RCVR control signal failure	1205-03	Data block retry limit reached [5]	
1201-13	UART control signal interrupt	1205-04	RX exceeded carrier lost limit	
	failure			
1201-14	DRVR/RCVR data failure	1205-05	TX exceeded carrier lost limit	
1201-15	Modem detection failure	1205-06	Time-out waiting for dial tone	
1201-16	Modem ROM, checksum failure	1205-07	Dial number string too long	
1201-17	Tone detect failure	1205-08	Modem time-out waiting for remote response	
1202-XX	Modem internal test	1205-09	Modem exceeded maximum redial limit	
1202-01	Time-out waiting for SYNC [1]	1205-10	Line quality prevented remote response	
1202-02	Time-out waiting for response [1]	1205-11	Modem time-out waiting for remote	
	0 , 11		connection	
1202-03	Data block retry limit reached [1]	1206-XX	Dial multi-frequency tone test	
1202-11	Time-out waiting for SYNC [2]	1206-17	Tone detection failure	
1202-12	Time-out waiting for response [2]	1210-XX	Modem direct connect test	
1202-13	Data block retry limit reached [2]	1210-01	Time-out waiting for SYNC [6]	
1202-21	Time-out waiting for SYNC [3]	1210-02	Time-out waiting for response [6]	
1202-22	Time-out waiting for response [3]	1210-03	Data block retry limit reached [6]	
1202-23	Data block retry limit reached [3]	1210-04	RX exceeded carrier lost limit	
1203-XX	Modem external termination test	1210-05	TX exceeded carrier lost limit	
1203-01	Modem external TIP/RING failure	1210-06	Time-out waiting for dial tone	
1203-02	Modem external data TIP/RING fail	1210-07	Dial number string too long	
1203-03	Modem line termination failure	1210-08	Modem time-out waiting for remote response	
1204-XX	Modem auto originate test	1210-09	Modem exceeded maximum redial limit	
1204-01	Time-out waiting for SYNC [4]	1210-10	Line quality prevented remote response	
1204-02	Time-out waiting for response [4]	1210-11	Modem time-out waiting for remote	
	5 , 311		connection	

NOTES:

- [1] Local loopback mode
- [2] Analog loopback originate mode [3] Analog loopback answer mode [4] Modem auto originate test

- [5] Modern dute enginete test [6] Modern direct connect test

A.12 SYSTEM STATUS ERROR MESSAGES (16xx-xx)

	Table A-12.
	System Status Error Messages
Message	Probable Cause
1601-xx	Temperature violation
1611-xx	Fan failure

See Table A-18 for additional messages.

A.13 HARD DRIVE ERROR MESSAGES (17xx-xx)

Table A-13.				
Hard Drive Error Messages				
Message	Probable Cause	Message	Probable Cause	
17xx-01	Exceeded max. soft error limit	17xx-51	Failed I/O read test	
17xx-02	Exceeded max. Hard error limit	17xx-52	Failed file I/O compare test	
17xx-03	Previously exceeded max. soft error limit	17xx-53	Failed drive/head register test	
17xx-04	Previously exceeded max.hard error limit	17xx-54	Failed digital input register test	
17xx-05	Failed to reset controller	17xx-55	Cylinder 1 error	
17xx-06	Fatal error while reading	17xx-56	Failed controller RAM diagnostics	
17xx-07	Fatal error while writing	17xx-57	Failed controller-to-drive diagnostics	
17xx-08	Failed compare of R/W buffers	17xx-58	Failed to write sector buffer	
17xx-09	Failed to format a track	17xx-59	Failed to read sector buffer	
17xx-10	Failed diskette sector wrap during read	17xx-60	Failed uncorrectable ECC error	
17xx-19	Cntlr. failed to deallocate bad sectors	17xx-62	Failed correctable ECC error	
17xx-40	Cylinder 0 error	17xx-63	Failed soft error rate	
17xx-41	Drive not ready	17xx-65	Exceeded max. bad sectors per track	
17xx-42	Failed to recalibrate drive	17xx-66	Failed to initialize drive parameter	
17xx-43	Failed to format a bad track	17xx-67	Failed to write long	
17xx-44	Failed controller diagnostics	17xx-68	Failed to read long	
17xx-45	Failed to get drive parameters from ROM	17xx-69	Failed to read drive size	
17xx-46	Invalid drive parameters from ROM	17xx-70	Failed translate mode	
17xx-47	Failed to park heads	17xx-71	Failed non-translate mode	
17xx-48	Failed to move hard drive table to RAM	17xx-72	Bad track limit exceeded	
17xx-49	Failed to read media in file write test	17xx-73	Previously exceeded bad track limit	
17xx-50	Failed I/O write test			
1700-xx = Ha	ard drive ID test	1719-xx =	Hard drive power mode test	
1701-xx = Ha	ard drive format test	1720-xx =	SMART drive detects imminent failure	
1702-xx = Ha	ard drive read test 1721-	xx = SCSI har	d drive imminent failure	
1703-xx = Ha	ard drive read/write compare test	1724-xx =	Net work preparation test	
1704-xx = Ha	ard drive random seek test	1736-xx =	Drive monitoring test	
1705-xx = Ha	ard drive controller test	1771-xx =	Pri. IDE controller address conflict	
1706-xx = Ha	ard drive ready test	1772-xx =	Sec. IDE controller address conflict	
1707-xx = Ha	ard drive recalibrate test	1780-xx =	: Disk 0 failure	
1708-xx = Ha	ard drive format bad track test	1781-xx =	: Disk 1 failure	
1709-xx = Ha	ard drive reset controller test		1782-xx = Pri. IDE controller failure	
1710-xx = Ha	1710-xx = Hard drive park head test		: Disk 0 failure	
1714-xx = Ha	1714-xx = Hard drive file write test		: Disk 1 failure	
1715-xx = Ha	ard drive head select test	1792-xx =	: Se. controller failure	
1716-xx = Ha	ard drive conditional format test	1793-xx =	: Sec. Controller or disk failure	
1717-xx = Ha	ard drive ECC test	1799-xx =	Invalid hard drive type	

A.14 HARD DRIVE ERROR MESSAGES (19xx-xx)

Table A-14.
Hard Drive Error Messages

Message	Probable Cause	Message	Probable Cause
19xx-01	Drive not installed	19xx-21	Got servo pulses second time but not first
19xx-02	Cartridge not installed	19xx-22	Never got to EOT after servo check
19xx-03	Tape motion error	19xx-23	Change line unset
19xx-04	Drive busy erro	19xx-24	Write-protect error
19xx-05	Track seek error	19xx-25	Unable to erase cartridge
19xx-06	Tape write-protect error	19xx-26	Cannot identify drive
19xx-07	Tape already Servo Written	19xx-27	Drive not compatible with controller
19xx-08	Unable to Servo Write	19xx-28	Format gap error
19xx-09	Unable to format	19xx-30	Exception bit not set
19xx-10	Format mode error	19xx-31	Unexpected drive status
19xx-11	Drive recalibration error	19xx-32	Device fault
19xx-12	Tape not Servo Written	19xx-33	Illegal command
19xx-13	Tape not formatted	19xx-34	No data detected
19xx-14	Drive time-out error	19xx-35	Power-on reset occurred
19xx-15	Sensor error flag	19xx-36	Failed to set FLEX format mode
19xx-16	Block locate (block ID) error	19xx-37	Failed to reset FLEX format mode
19xx-17	Soft error limit exceeded	19xx-38	Data mismatch on directory track
19xx-18	Hard error limit exceeded	19xx-39	Data mismatch on track 0
19xx-19	Write (probably ID) error	19xx-40	Failed self-test
19xx-20	NEC fatal error	19xx-91	Power lost during test

1900-xx = Tape ID test failed

1901-xx = Tape servo write failed 1902-xx = Tape format failed

1903-xx = Tape drive sensor test failed

1904-xx = Tape BOT/EOT test failed

1905-xx = Tape read test failed 1906-xx = Tape R/W compare test failed

1907-xx = Tape write-protect failed

A.15 VIDEO (GRAPHICS) ERROR MESSAGES (24xx-xx)

Table	A-15.
 (0	

Video (Graphics) Error Messages				
Message	Probable Cause	Message	Probable Cause	
2402-01	Video memory test failed	2418-02	EGA shadow RAM test failed	
2403-01	Video attribute test failed	2419-01	EGA ROM checksum test failed	
2404-01	Video character set test failed	2420-01	EGA attribute test failed	
2405-01	80x25 mode, 9x14 cell test failed	2421-01	640x200 mode test failed	
2406-01	80x25 mode, 8x8 cell test failed	2422-01	640x350 16-color set test failed	
2407-01	40x25 mode test failed	2423-01	640x350 64-color set test failed	
2408-01	320x200 mode color set 0 test failed	2424-01	EGA Mono. text mode test failed	
2409-01	320x200 mode color set 1 test failed	2425-01	EGA Mono. graphics mode test failed	
2410-01	640x200 mode test failed	2431-01	640x480 graphics mode test failed	
2411-01	Screen memory page test failed	2432-01	320x200 256-color set test failed	
2412-01	Gray scale test failed	2448-01	Advanced VGA controller test failed	
2414-01	White screen test failed	2451-01	132-column AVGA test failed	
2416-01	Noise pattern test failed	2456-01	AVGA 256-color test failed	
2417-01	Lightpen text test failed, no response	2458-xx	AVGA BitBLT test failed	
2417-02	Lightpen text test failed, invalid response	2468-xx	AVGA DAC test failed	
2417-03	Lightpen graphics test failed, no resp.	2477-xx	AVGA data path test failed	
2417-04	Lightpen graphics tst failed, invalid resp.	2478-xx	AVGA BitBLT test failed	
2418-01	EGA memory test failed	2480-xx	AVGA linedraw test failed	

A.16 AUDIO ERROR MESSAGES (3206-xx)

	Table A-16.
	Audio Error Message
Message	Probable Cause
3206-xx	Audio subsystem internal error

A.17 DVD/CD-ROM ERROR MESSAGES (33xx-xx)

	Table A-17.
	DVD/CD-ROM Drive Error Messages
Message	Probable Cause
3301-xx	Drive test failed
3305-XX	Seek test failed

See Table A-18 for additional messages.

A.18 NETWORK INTERFACE ERROR MESSAGES (60xx-xx)

Table A-18. Network Interface Error Messages				
Message	Probable Cause	Message	Probable Cause	
6000-xx	Pointing device interface error	6054-xx	Token ring configuration test failed	
6014-xx	Ethernet configuration test failed	6056-xx	Token ring reset test failed	
6016-xx	Ethernet reset test failed	6068-xx	Token ring int. loopback test failed	
6028-xx	Ethernet int. loopback test failed	6069-xx	Token ring ext. loopback test failed	
6029-xx	Ethernet ext. loopback test failed	6089-xx	Token ring open	

A.19 SCSI INTERFACE ERROR MESSAGES (65xx-xx, 66xx-xx, 67xx-xx)

Table A-19.		
SCSI Interfa	ce Error Messages	

Message	Probable Cause	Message	Probable Cause
6nyy-02	Drive not installed	6nyy-33	Illegal controller command
6nyy-03	Media not installed	6nyy-34	Invalid SCSI bus phase
6nyy-05	Seek failure	6nyy-35	Invalid SCSI bus phase
6nyy-06	Drive timed out	6nyy-36	Invalid SCSI bus phase
6nyy-07	Drive busy	6nyy-39	Error status from drive
6nyy-08	Drive already reserved	6nyy-40	Drive timed out
6nyy-09	Reserved	6nyy-41	SSI bus stayed busy
6nyy-10	Reserved	6nyy-42	ACK/REQ lines bad
6nyy-11	Media soft error	6nyy-43	ACK did not deassert
6nyy-12	Drive not ready	6nyy-44	Parity error
6nyy-13	Media error	6nyy-50	Data pins bad
6nyy-14	Drive hardware error	6nyy-51	Data line 7 bad
6nyy-15	Illegal drive command	6nyy-52	MSG, C/D, or I/O lines bad
6nyy-16	Media was changed	6nyy-53	BSY never went busy
6nyy-17	Tape write-protected	6nyy-54	BSY stayed busy
6nyy-18	No data detected	6nyy-60	Controller CONFIG-1 register fault
6nyy-21	Drive command aborted	6nyy-61	Controller CONFIG-2 register fault
6nyy-24	Media hard error	6nyy-65	Media not unloaded
6nyy-25	Reserved	6nyy-90	Fan failure
6nyy-30	Controller timed out	6nyy-91	Over temperature condition
6nyy-31	Unrecoverable error	6nyy-92	Side panel not installed
6nyy-32	Controller/drive not connected	6nyy-99	Autoloader reported tape not loaded properly

n = 5, Hard drive

= 6, CD-ROM drive

= 7, Tape drive.

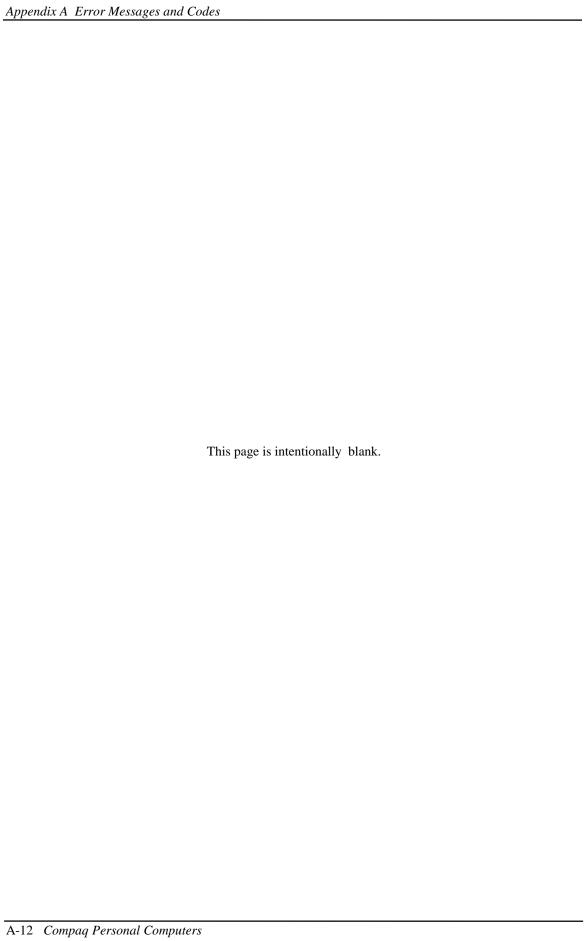
yy = 00, ID

= 03, Power check

= 05, Read

= 06, SA/Media

= 08, Controller


= 23, Random read

= 28, Media load/unload

A.20 POINTING DEVICE INTERFACE ERROR MESSAGES (8601-xx)

i abie A-20.						
Pointing Device Interface Error Messages						

Message	Probable Cause	Message	Probable Cause
8601-01	Mouse ID fails	8601-07	Right block not selected
8601-02	Left mouse button is inoperative	8601-08	Timeout occurred
8601-03	Left mouse button is stuck closed	8601-09	Mouse loopback test failed
8601-04	Right mouse button is inoperative	8601-10	Pointing device is inoperative
8601-05	Right mouse button is stuck closed	8602-xx	I/F test failed
8601-06	Left block not selected		

Appendix B ASCII CHARACTER SET

B.1 INTRODUCTION

This appendix lists, in Table B-1, the 256-character ASCII code set including the decimal and hexadecimal values. All ASCII symbols may be called while in DOS or using standard text-mode editors by using the combination keystroke of holding the **Alt** key and using the Numeric Keypad to enter the decimal value of the symbol. The extended ASCII characters (decimals 128-255) can only be called using the **Alt** + Numeric Keypad keys.

NOTE: Regarding keystrokes, refer to notes at the end of the table. Applications may interpret multiple keystroke accesses differently or ignore them completely.

Table B-1. ASCII Character Set											
Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol
0	00	Blank	32	20	Space	64	40	@	96	60	- Cyllibol
1	01	\odot	33	21	!	65	41	Ä	97	61	а
2	02		34	22	"	66	42	В	98	62	b
3	03	Ÿ	35	23	#	67	43	С	99	63	С
4	04	•	36	24	\$	68	44	D	100	64	d
5	05	*	37	25	%	69	45	E	101	65	е
6	06	^	38	26	&	70	46	F	102	66	f
7	07	•	39	27	4	71	47	G	103	67	g
8	08	0	40	28	(72	48	Н	104	68	ň
9	09	\bigcirc	41	29)	73	49	I	105	69	I
10	0A		42	2A	*	74	4A	J	106	6A	j
11	0B		43	2B	+	75	4B	K	107	6B	k
12	0C	Ϋ́	44	2C	`	76	4C	L	108	6C	
13	0D	Ĵ	45	2D	-	77	4D	M	109	6D	m
14	0E	Ą	46	2E		78	4E	N	110	6E	n
15	0F	₩	47	2F	/	79	4F	0	111	6F	0
16	10	•	48	30	0	80	50	P	112	70	р
17	11	•	49	31	1	81	51	Q	113	71	q
18	12	‡	50	32	2	82	52	R	114	72	r
19	13	!!	51	33	3	83	53	S	115	73	S
20	14	¶	52	34	4	84	54	T	116	74	t
21	15	§	53	35	5	85	55	U	117	75 70	u
22	16	<u>_</u>	54	36	6	86	56	V	118	76 77	V
23	17		55	37	7	87	57	W	119	77 70	W
24	18	↑	56	38	8	88	58	X	120	78	X
25	19	\downarrow	57	39	9	89	59	Y	121	79	У
26	1A	\rightarrow	58	3A		90	5A	Z	122	7A	Z
27	1B	\leftarrow	59	3B	;	91	5B	Į,	123	7B	{
28	1C		60	3C	<	92	5C	\	124	7C	Į
29	1D	\leftrightarrow	61	3D	=	93	5D	j	125	7D	}
30	1E	_	62	3E	>	94	5E	٨	126	7E	^
31	1F	▼	63	3F	?	95	5F		127	7F	△ [1]
										С	ontinued

Table B-1. ASCII Code Set (Continued)

B-1

Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol
128	80	Ç	160	A0	á	192	C0	L	224	E0	α
129	81	ü	161	A1	í	193	C1	Τ	225	E1	ß
130	82	é	162	A2	Ó	194	C2	Т	226	E2	Γ
131	83	â	163	А3	ú	195	C3	ŀ	227	E3	П
132	84	ä	164	A4	ñ	196	C4	_	228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
134	86	å	166	A6	a	198	C6	ŧ	230	E6	μ
135	87	Ç	167	A7	0	199	C7	Ĺ	231	E7	τ
136	88	ê	168	A8	خ	200	C8	L	232	E8	Φ
137	89	ë	169	A9	_	201	C9	1	233	E9	Θ
138	8A	è	170	AA	7	202	CA	╨	234	EA	Ω
139	8B	ï	171	AB	1/2	203	CB	ī	235	EB	δ
140	8C	î	172	AC	1/4	204	CC	Ţ	236	EC	∞
141	8D	ì	173	AD	i	205	CD	=	237	ED	φ
142	8E	Ä	174	ΑE	«	206	CE	#	238	EE	ε
143	8F	Å	175	AF	>>	207	CF		239	EF	Π
144	90	É	176	B0		208	D0	Ш	240	F0	≡.
145	91	æ	177	B1	CONTRACTOR CONTRA	209	D1	₹	241	F1	±
146	92	Æ	178	B2		210	D2	${\mathbb I}$	242	F2	≥
147	93	ô	179	B3		211	D3		243	F3	≤
148	94	ö	180	B4	+	212	D4	Ŀ	244	F4	ſ
149	95	ò	181	B5	╡	213	D5	F	245	F5	J
150	96	û	182	B6	1	214	D6	Г	246	F6	÷
151	97	ù	183	B7	П	215	D7	 ↓	247	F7	≈
152	98	ÿ Ö	184	B8	7	216	D8	+	248	F8	0
153	99	Ö	185	B9	4	217	D9	7	249	F9	•
154	9A	Ü	186	BA		218	DA	Т	250	FA	•
155	9B	¢	187	BB]	219	DB		251	FB	$\sqrt{}$
156	9C	£	188	BC		220	DC		252	FC	n
157	9D	¥	189	BD	Ш.	221	DD	L	253	FD	2
158	9E	Rs	190	BE]	222	DE	J	254	FE	
159	9F	f	191	BF	7	223	DF		255	FF	Blank

NOTES:

[1] Symbol not displayed. Keystroke Guide:

Dec #	Keystroke(s)
0	Ctrl 2
1-26	Ctrl A thru Z respectively
27	Ctrl [
28	Ctrl
29	Ctrl]
30	Ctrl 6
31	Ctrl -
32	Space Bar
33-43	Shift and key w/corresponding symbol
44-47	Key w/corresponding symbol
48-57	Key w/corresponding symbol, numerical keypad w/Num Lock active
58	Shift and key w/corresponding symbol
59	Key w/corresponding symbol
60	Shift and key w/corresponding symbol
61	Key w/corresponding symbol
62-64	Shift and key w/corresponding symbol
65-90	Shift and key w/corresponding symbol or key w/corresponding symbol and Caps Lock active
91-93	Key w/corresponding symbol
94, 95	Shift and key w/corresponding symbol
96	Key w/corresponding symbol
97-126	Key w/corresponding symbol or Shift and key w/corresponding symbol
407	and Caps Lock active
127	Ctrl -
128-255	Alt and decimal digit(s) of desired character

Appendix C KEYBOARD

C.1 INTRODUCTION

This appendix describes the Compaq keyboard that is included as standard with the system unit. The keyboard complies with the industry-standard classification of an "enhanced keyboard" and includes a separate cursor control key cluster, twelve "function" keys, and enhanced programmability for additional functions.

This appendix covers the following keyboard types:

- Standard enhanced keyboard.
- ◆ Space-Saver Windows-version keyboard featuring additional keys for specific support of the Windows operating system.
- Easy Access keyboard with additional buttons for internet accessibility functions.

Only one type of keyboard is supplied with each system. Other types may be available as an option.

NOTE: This appendix discusses only the keyboard unit. The keyboard interface is a function of the system unit and is discussed in Chapter 5, Input/Output Interfaces.

Topics covered in this appendix include the following:

★ Keystroke processing (C.2) page C-2
 ★ Connectors (C.3) page C-16

C.2 KEYSTROKE PROCESSING

A functional block diagram of the keystroke processing elements is shown in Figure C-1. Power (+5 VDC) is obtained from the system through the PS/2-type interface. The keyboard uses a Z86C14 (or equivalent) microprocessor. The Z86C14 scans the key matrix drivers every 10 ms for pressed keys while at the same time monitoring communications with the keyboard interface of the system unit. When a key is pressed, a Make code is generated. A Break code is generated when the key is released. The Make and Break codes are collectively referred to as scan codes. All keys generate Make and Break codes with the exception of the Pause key, which generates a Make code only.

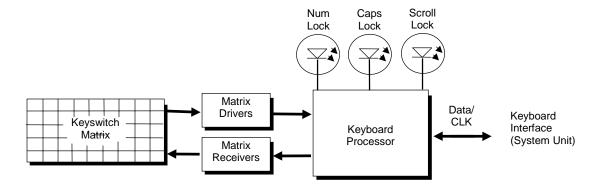
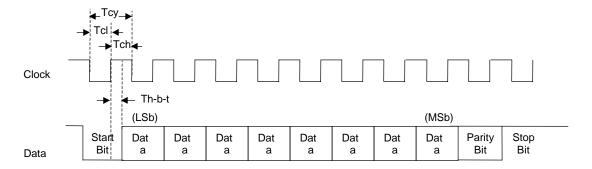


Figure C-1. Keystroke Processing Elements, Block Diagram


When the system is turned on, the keyboard processor generates a Power-On Reset (POR) signal after a period of 150 ms to 2 seconds. The keyboard undergoes a Basic Assurance Test (BAT) that checks for shorted keys and basic operation of the keyboard processor. The BAT takes from 300 to 500 ms to complete.

If the keyboard fails the BAT, an error code is sent to the CPU and the keyboard is disabled until an input command is received. After successful completion of the POR and BAT, a completion code (AAh) is sent to the CPU and the scanning process begins.

The keyboard processor includes a 16-byte FIFO buffer for holding scan codes until the system is ready to receive them. Response and typematic codes are not buffered. If the buffer is full (16 bytes held) a 17th byte of a successive scan code results in an overrun condition and the overrun code replaces the scan code byte and any additional scan code data (and the respective key strokes) are lost. Multi-byte sequences must fit entirely into the buffer before the respective keystroke can be registered.

C.2.1 PS/2-TYPE KEYBOARD TRANSMISSIONS

The PS/2-type keyboard sends two main types of data to the system; commands (or responses to system commands) and keystroke scan codes. Before the keyboard sends data to the system (specifically, to the 8042-type logic within the system), the keyboard verifies the clock and data lines to the system. If the clock signal is low (0), the keyboard recognizes the inhibited state and loads the data into a buffer. Once the inhibited state is removed, the data is sent to the system. Keyboard-to-system transfers (in the default mode) consist of 11 bits as shown in Figure C-2.

Parameter	Minimum	Nominal	Maximum
Tcy (clock cycle)	60 us		80 us
Tcl (clock low)	30 us	41 us	50 us
Tch (clock high)	30 us		40 us
Th-b-t (high-before-transmit)		20 us	

Figure C–2. PS/2 Keyboard-To-System Transmission, Timing Diagram

The system can halt keyboard transmission by setting the clock signal low. The keyboard checks the clock line every 60 us to verify the state of the signal. If a low is detected, the keyboard will finish the current transmission **if** the rising edge of the clock pulse for the parity bit has not occurred. The system uses the same timing relationships during reads (typically with slightly reduced time periods).

The enhanced keyboard has three operating modes:

- ♦ Mode 1 PC-XT compatible
- ♦ Mode 2 PC-AT compatible (default)
- Mode 3 Select mode (keys are programmable as to make-only, break-only, typematic)

Modes can be selected by the user or set by the system. Mode 2 is the default mode. Each mode produces a different set of scan codes. When a key is pressed, the keyboard processor sends that key's make code to the 8042 logic of the system unit. The When the key is released, a release code is transmitted as well (except for the Pause key, which produces only a make code). The 8042-type logic of the system unit responds to scan code reception by asserting IRQ1, which is processed by the interrupt logic and serviced by the CPU with an interrupt service routine. The service routine takes the appropriate action based on which key was pressed.

C.2.2 USB-TYPE KEYBOARD TRANSMISSIONS

The USB-type keyboard sends essentially the same information to the system that the PS/2 keyboard does except that the data receives additional NRZI encoding and formatting (prior to leaving the keyboard) to comply with the USB I/F specification (discussed in chapter 5 of this guide).

Packets received at the system's USB I/F and decoded as originating from the keyboard result in an SMI being generated. An SMI handler routine is invoked that decodes the data and transfers the information to the 8042 keyboard controller where normal (legacy) keyboard processing takes place.

C.2.3 KEYBOARD LAYOUTS

Figures C-3 through C-8 show the key layouts for keyboards shipped with Compaq systems. Actual styling details including location of the Compaq logo as well as the numbers lock, caps lock, and scroll lock LEDs may vary.

C.2.3.1 Standard Enhanced Keyboards

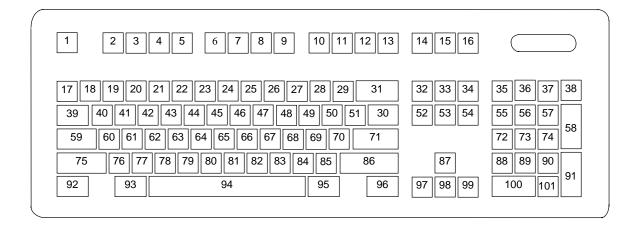


Figure C-3. U.S. English (101-Key) Keyboard Key Positions

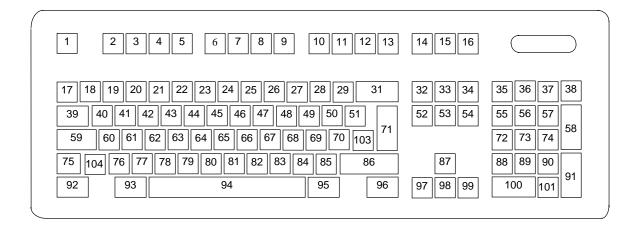


Figure C-4. National (102-Key) Keyboard Key Positions

C.2.3.2 Windows Enhanced Keyboards

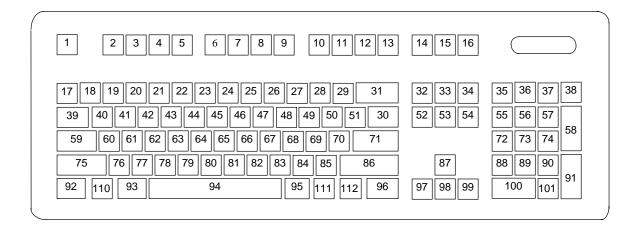


Figure C-5. U.S. English Windows (101W-Key) Keyboard Key Positions

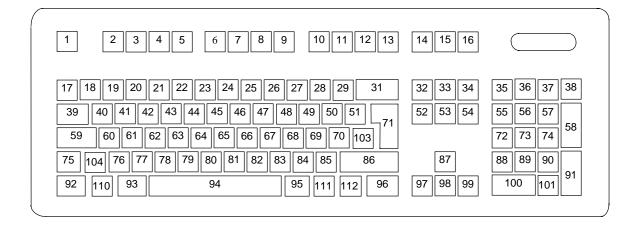
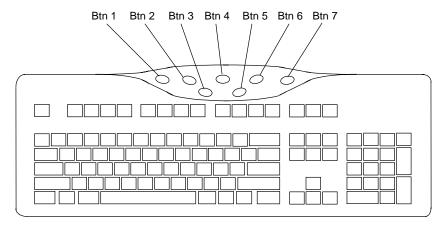
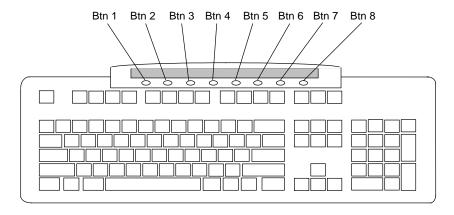



Figure C-6. National Windows (102W-Key) Keyboard Key Positions

C.2.3.3 Easy Access Keyboards

The Easy Access keyboard is a Windows Enhanced-type keyboard that includes special buttons allowing quick internet navigation. Depending on system, either a 7-button or an 8-button layout may be supplied.

The 7-button Easy Access Keyboard uses the layout shown in Figure C-7 and is available with either a legacy PS/2-type connection or a Universal Serial Bus (USB) type connection.



NOTE:

Main key positions same as Windows Enhanced (Figures C-5 or C-6).

Figure C-7. 7-Button Easy Access Keyboard Layout

The 8-button Easy Access Keyboard uses the layout shown in Figure C-8 and uses the PS/2-type connection.

NOTE:

Main key positions same as Windows Enhanced (Figures C-5 or C-6).

Figure C-8. 8-Button Easy Access Keyboard Layout

C.2.4 KEYS

All keys generate a make code (when pressed) and a break code (when released) with the exception of the **Pause** key (pos. 16), which produces a make code only. All keys with the exception of the **Pause** and Easy Access keys are also typematic, although the typematic action of the **Shift**, **Ctrl**, **Alt**, **Num Lock**, **Scroll Lock**, **Caps Lock**, and **Ins** keys is suppressed by the BIOS. Typematic keys, when held down longer than 500 ms, send the make code repetitively at a 10-12 Hz rate until the key is released. If more than one key is held down, the last key pressed will be typematic.

C.2.4.1 Special Single-Keystroke Functions

The following keys provide the intended function in most applications and environments.

Caps Lock - The **Caps Lock** key (pos. 59), when pressed and released, invokes a BIOS routine that turns on the caps lock LED and shifts into upper case key positions 40-49, 60-68, and 76-82. When pressed and released again, these keys revert to the lower case state and the LED is turned off. Use of the **Shift** key will reverse which state these keys are in based on the **Caps Lock** key.

Num Lock - The **Num Lock** key (pos. 32), when pressed and released, invokes a BIOS routine that turns on the num lock LED and shifts into upper case key positions 55-57, 72-74, 88-90, 100, and 101. When pressed and released again, these keys revert to the lower case state and the LED is turned off.

The following keys provide special functions that require specific support by the application.

Print Scrn - The **Print Scrn** (pos. 14) key can, when pressed, generate an interrupt that initiates a print routine. This function may be inhibited by the application.

Scroll Lock - The **Scroll Lock** key (pos. 15) when pressed and released, , invokes a BIOS routine that turns on the scroll lock LED and inhibits movement of the cursor. When pressed and released again, the LED is turned off and the function is removed. This keystroke is always serviced by the BIOS (as indicated by the LED) but may be inhibited or ignored by the application.

Pause - The **Pause** (pos. 16) key, when pressed, can be used to cause the keyboard interrupt to loop, i.e., wait for another key to be pressed. This can be used to momentarily suspend an operation. The key that is pressed to resume operation is discarded. This function may be ignored by the application.

The Esc, Fn (function), Insert, Home, Page Up/Down, Delete, and End keys operate at the discretion of the application software.

C.2.4.2 Multi-Keystroke Functions

Shift - The **Shift** key (pos. 75/86), when held down, produces a shift state (upper case) for keys in positions 17-29, 30, 39-51, 60-70, and 76-85 as long as the **Caps Lock** key (pos. 59) is toggled off. If the **Caps Lock** key is toggled on, then a held **Shift** key produces the lower (normal) case for the identified pressed keys. The **Shift** key also reverses the **Num Lock** state of key positions 55-57, 72, 74, 88-90, 100, and 101.

Ctrl - The **Ctrl** keys (pos. 92/96) can be used in conjunction with keys in positions 1-13, 16, 17-34, 39-54, 60-71, and 76-84. The application determines the actual function. Both **Ctrl** key positions provide identical functionality. The pressed combination of **Ctrl** and **Break** (pos. 16) results in the generation of BIOS function INT 1Bh. This software interrupt provides a method of exiting an application and generally halts execution of the current program.

Alt - The **Alt** keys (pos. 93/95) can be used in conjunction with the same keys available for use with the **Ctrl** keys with the exception that position 14 (**SysRq**) is available instead of position 16 (**Break**). The **Alt** key can also be used in conjunction with the numeric keypad keys (pos. 55-57, 72-74, and 88-90) to enter the decimal value of an ASCII character code from 1-255. The application determines the actual function of the keystrokes. Both **Alt** key positions provide identical functionality. The combination keystroke of **Alt** and **SysRq** results in software interrupt 15h, AX=8500h being executed. It is up to the application to use or not use this BIOS function.

The **Ctrl** and **Alt** keys can be used together in conjunction with keys in positions 1-13, 17-34, 39-54, 60-71, and 76-84. The **Ctrl** and **Alt** key positions used and the sequence in which they are pressed make no difference as long as they are held down at the time the third key is pressed. The **Ctrl**, **Alt**, and **Delete** keystroke combination (required twice if in the Windows environment) initiates a system reset (warm boot) that is handled by the BIOS.

C.2.4.3 Windows Keystrokes

Windows-enhanced keyboards include three additional key positions. Key positions 110 and 111 (marked with the Windows logo) have the same functionality and are used by themselves or in combination with other keys to perform specific "hot-key" type functions for the Windows operating system. The defined functions of the Windows logo keys are listed as follows:

Keystroke **Function** Window Logo Open Start menu Window Logo + F1 Display pop-up menu for the selected object Window Logo + TAB Activate next task bar button Window Logo + E Explore my computer Find document Window Logo + F Window Logo + CTRL + F Find computer Window Logo + M Minimize all Shift + Window Logo + M Undo minimize all Window Logo + R Display Run dialog box Window Logo + PAUSE Perform system function Window Logo + 0-9 Reserved for OEM use (see following text)

The combination keystroke of the Window Logo + 1-0 keys are reserved for OEM use for auxiliary functions (speaker volume, monitor brightness, password, etc.).

Key position 112 (marked with an application window icon is used in combination with other keys for invoking Windows application functions.

Compaq Personal Computers

C.2.4.4 Easy Access Keystrokes

The Easy Access keyboards (Figures C-7 and C-8) include additional keys (also referred to as buttons) used to streamline internet access and navigation.

These buttons, which can be re-programmed to provide other functions, have the default functionality described below:

7-Button Easy Access Keyboard:

Button #	Description	Default Function
1	Check email	Email
2	Go to community	Emoney
3	Extra web site	Compaq web site
4	Go to favorite web site	AltaVista web site
5	Internet search	Search
6	Instant answer	Travel expenses
7	E-commerce	Shopping

8-Button Easy Access Keyboard:

Button #	Description	Default Function
1	Go to favorite web site	Customer web site of choice
2	Go to AltaVista	AltaVista web site
3	Search	AltaVista search engine
4	Check Email	Launches user Email
5	Business Community	Industry specification info
6	Market Monitor	Launches Bloomberg market monitor
7	Meeting Center	Links to user's project center
8	News/PC Lock	News retrieval service

All buttons may be re-programmed by the user through the Easy Access utility.

C.2.5 KEYBOARD COMMANDS

Table C-1 lists the commands that the keyboard can send to the system (specifically, to the 8042-type logic).

Table C-1.				
Keyboard-to-System Commands				
Command	Value	Description		
Key Detection Error/Over/run	00h [1] FFh [2]	Indicates to the system that a switch closure couldn't be identified.		
BAT Completion	AAh	Indicates to the system that the BAT has been successful.		
BAT Failure	FCh	Indicates failure of the BAT by the keyboard.		
Echo	EEh	Indicates that the Echo command was received by the keyboard.		
Acknowledge (ACK)	FAh	Issued by the keyboard as a response to valid system inputs (except the Echo and Resend commands).		
Resend	FEh	Issued by the keyboard following an invalid input.		
Keyboard ID	83ABh	Upon receipt of the Read ID command from the system, the keyboard issues the ACK command followed by the two IDS bytes.		

Note:

[1] Modes 2 and 3.

[2] Mode 1 only.

C.2.6 SCAN CODES

The scan codes generated by the keyboard processor are determined by the mode the keyboard is operating in.

- Mode 1: In Mode 1 operation, the keyboard generates scan codes compatible with 8088-/8086-based systems. To enter Mode 1, the scan code translation function of the keyboard controller must be disabled. Since translation is not performed, the scan codes generated in Mode 1 are identical to the codes required by BIOS. Mode 1 is initiated by sending command F0h with the 01h option byte. Applications can obtain system codes and status information by using BIOS function INT 16h with AH=00h, 01h, and 02h.
- ♦ Mode 2: Mode 2 is the default mode for keyboard operation. In this mode, the 8042 logic translates the make codes from the keyboard processor into the codes required by the BIOS. This mode was made necessary with the development of the Enhanced III keyboard, which includes additional functions over earlier standard keyboards. Applications should use BIOS function INT 16h, with AH=10h, 11h, and 12h for obtaining codes and status data. In Mode 2, the keyboard generates the Break code, a two-byte sequence that consists of a Make code immediately preceded by F0h (i.e., Break code for 0Eh is "F0h 0Eh").
- ♦ Mode 3: Mode 3 generates a different scan code set from Modes 1 and 2. Code translation must be disabled since translation for this mode cannot be done.

Table C-2. Keyboard Scan Codes

		Keyboard Sc		
Key			ake / Break Codes (Hex)	Marila O
Pos.	Legend	Mode 1	Mode 2	Mode 3
1	Esc	01/81	76/F0 76	08/na
2	F1	3B/BB	05/F0 05	07/na
3	F2	3C/BC	06/F0 06	0F/na
4	F3	3D/BD	04/F0 04	17/na
5	F4	3E/BE	0C/F0 0C	1F/na
6	F5	3F/BF	03/F0 03	27/na
7	F6	40/C0	0B/F0 0B	2F/na
8	F7	41/C1	83/F0 83	37/na
9	F8	42/C2	0A/F0 0A	3F/na
10	F9	43/C3	01/FO 01	47/na
11	F10	44/C4	09/F0 09	4F/na
12	F11	57/D7	78/F0 78	56/na
13	F12	58/D8	07/F0 07	5E/na
14	Print Scrn	E0 2A E0 37/E0 B7 E0 AA	E0 2A E0 7C/E0 F0 7C E0 F0 12	57/na
		E0 37/E0 B7 [1] [2]	E0 7C/E0 F0 7C [1] [2]	
		54/84 [3]	84/F0 84 [3]	
15	Scroll Lock	46/C6	7E/F0 7E	5F/na
16	Pause	E1 1D 45 E1 9D C5/na	E1 14 77 E1 F0 14 F0 77/na	62/na
		E0 46 E0 C6/na [3]	E0 7E E0 F0 7E/na [3]	
17	`	29/A9	0E/F0 E0	0E/F0 0E
18	1	02/82	16/F0 16	46/F0 46
19	2	03/83	1E/F0 1E	1E/F0 1E
20	3	04/84	26/F0 26	26/F0 26
21	4	05/85	25/F0 25	25/F0 25
22	5	06/86	2E/F0 2E	2E/F0 2E
23	6	07/87	36/F0 36	36/F0 36
24	7	08/88	3D/F0 3D	3D/F0 3D
25	8	09/89	3E/F0 3E	3E/F0 3E
26	9	0A/8A	46/F0 46	46/F0 46
27	0	0B/8B	45/F0 45	45/F0 45
28	-	0C/8C	4E/F0 4E	4E/F0 4E
29	=	0D/8D	55/F0 55	55/F0 55
30		2B/AB	5D/F0 5D	5C/F0 5C
31	Backspace	0E/8E	66/F0 66	66/F0 66
32	Insert	E0 52/E0 D2	E0 70/E0 F0 70	67/na
52	IIISCIT	E0 AA E0 52/E0 D2 E0 2A [4]	E0 F0 12 E0 70/E0 F0 70 E0 12 [5]	07/11a
		E0 2A E0 52/E0 D2 E0 AA [6]	E0 12 E0 70/E0 F0 70 E0 F0 12 [6]	
33	Home	E0 47/E0 D2	E0 6C/E0 F0 6C	6E/na
00	Tiomic	E0 AA E0 52/E0 D2 E0 2A [4]	E0 F0 12 E0 6C/E0 F0 6C E0 12 [5]	OL/III
		E0 2A E0 47/E0 C7 E0 AA [6]	E0 12 E0 6C/E0 F0 6C E0 F0 12 [6]	
34	Page Up	E0 49/E0 C7	E0 7D/E0 F0 7D	6F/na
0.	. ago op	E0 AA E0 49/E0 C9 E0 2A [4]	E0 F0 12 E0 7D/E0 F0 7D E0 12 [5]	oi /iia
		E0 2A E0 49/E0 C9 E0 AA [6]	E0 12 E0 7D/E0 F0 7D E0 F0 12 [6]	
35	Num Lock	45/C5	77/F0 77	76/na
36	/	E0 35/E0 B5	E0 4A/E0 F0 4A	77/na
30	,	E0 AA E0 35/E0 B5 E0 2A [1]	E0 F0 12 E0 4A/E0 F0 4A E0 12 [1]	777110
37	*	37/B7	7C/F0 7C	7E/na
38	_	4A/CA	7B/F0 7B	84/na
39	Tab	0F/8F	0D/F0 0D	0D/na
40	Q	10/90	15/F0 15	15/na
40	· ·	10/30	13/10 13	15/11a

Continued

([x] Notes listed at end of table.)

Table C-2. Keyboard Scan Codes (Continued)

Key		Mak	te / Break Codes (Hex)	
Pos	Legend	Mode 1	Mode 2	Mode 3
41	W	11/91	1D/F0 1D	1D/F0 1D
42	E	12/92	24/F0 24	24/F0 24
43	R	13/93	2D/F0 2D	2D/F0 2D
44	T	14/94	2C/F0 2C	2C/F0 2C
45	Υ	15/95	35/F0 35	35/F0 35
46	U	16/96	3C/F0 3C	3C/F0 3C
47		17/97	43/F0 43	43/F0 43
48	0	18/98	44/F0 44	44/F0 44
49	Р	19/99	4D/F0 4D	4D/F0 4D
50	[1A/9A	54/F0 54	54/F0 54
51]	1B/9B	5B/F0 5B	5B/F0 5B
52	Delete	E0 53/E0 D3	E0 71/E0 F0 71	64/F0 64
		E0 AA E0 53/E0 D3 E0 2A [4]	E0 F0 12 E0 71/E0 F0 71 E0 12	
		E0 2A E0 53/E0 D3 E0 AA [6]	[5]	
			E0 12 E0 71/E0 F0 71 E0 F0 12	
			[6]	
53	End	E0 4F/E0 CF	E0 69/E0 F0 69	65/F0 65
		E0 AA E0 4F/E0 CF E0 2A [4]	E0 F0 12 E0 69/E0 F0 69 E0 12	
		E0 2A E0 4F/E0 CF E0 AA [6]	[5]	
			E0 12 E0 69/E0 F0 69 E0 F0 12	
			[6]	
54	Page Down	E0 51/E0 D1	E0 7A/E0 F0 7A	6D/F0 6D
		E0 AA E0 51/E0 D1 E0 2A [4]	E0 F0 12 E0 7A/E0 F0 7A E0 12	
		E0 @a E0 51/E0 D1 E0 AA [6]	[5]	
			E0 12 E0 7A/E0 F0 7A E0 F0 12	
55	7	47/C7 [6]	[6] 6C/F0 6C [6]	6C/na [6]
56	8	48/C8 [6]	75/F0 75 [6]	75/na [6]
57	9	49/C9 [6]	70/F0 7D [6]	75/na [6]
58	+	4E/CE [6]	79/F0 79 [6]	7C/F0 7C
59	Caps Lock	3A/BA	58/F0 58	14/F0 14
60	A	1E/9E	1C/F0 1C	1C/F0 1C
61	S	1F/9F	1B/F0 1B	1B/F0 1B
62	D	20/A0	23/F0 23	23/F0 23
63	F	21/A1	2B/F0 2B	2B/F0 2B
64	G	22/A2	34/F0 34	34/F0 34
65	H	23/A3	33/F0 33	33/F0 33
66	J	24/A4	3B/F0 3B	3B/F0 3B
67	K	25/A5	42/F0 42	42/F0 42
68	L	26/A6	4B/F0 4B	4B/F0 4B
69	-	27/A7	4C/F0 4C	4C/F0 4C
70	,	28/A8	52/F0 52	52/F0 52
71	Enter	1C/9C	5A/F0 5A	5A/F0 5A
72	4	4B/CB [6]	6B/F0 6B [6]	6B/na [6]
73	5	4C/CC [6]	73/F0 73 [6]	73/na [6]
74	6	4D/CD [6]	74/F0 74 [6]	74/na [6]
75	Shift (left)	2A/AA	12/F0 12	12/F0 12
76	Z	2C/AC	1A/F0 1A	1A/F0 1A
77	X	2D/AD	22/F0 22	22/F0 22
78	C	2E/AE	21/F0 21	21/F0 21
79	V	2F/AF	2A/F0 2A	2A/F0 2A
80	В	30/B0	32/F0 32	32/F0 32
				continued

Continued

([x] Notes listed at end of table.)

Table C-2. Keyboard Scan Codes (Continued)

Key	<u> </u>	Ma	ike / Break Codes (Hex)	
Pos.	Legend	Mode 1	Mode 2	Mode 3
81	N	31/B1	31/F0 31	31/F0 31
82	M	32/B2	3A/F0 3A	3A/F0 3A
83	,	33/B3	41/F0 41	41/F0 41
84		34/B4	49/F0 49	49/F0 49
85	/	35/B5	4A/F0 4A	4A/F0 4A
86	Shift (right)	36/B6	59/F0 59	59/F0 59
87		E0 48/E0 C8	E0 75/E0 F0 75	63/F0 63
		E0 AA E0 48/E0 C8 E0 2A [4]	E0 F0 12 E0 75/E0 F0 75 E0 12 [5]	
		E0 2A E0 48/E0 C8 E0 AA [6]	E0 12 E0 75/E0 F0 75 E0 F0 12 [6]	
88	1	4F/CF [6]	69/F0 69 [6]	69/na [6]
89	2	50/D0 [6]	72/F0 72 [6]	72/na [6]
90	3	51/D1 [6]	7A/F0 7A [6]	7A/na [6]
91	Enter	E0 1C/E0 9C	E0 5A/F0 E0 5A	79/F0
				79[6]
92	Ctrl (left)	1D/9D	14/F0 14	11/F0 11
93	Alt (left)	38/B8	11/F0 11	19/F0 19
94	(Space)	39/B9	29/F0 29	29/F0 29
95	Alt (right)	E0 38/E0 B8	E0 11/F0 E0 11	39/na
96	Ctrl (right)	E0 1D/E0 9D	E0 14/F0 E0 14	58/na
97		E0 4B/E0 CB	E0 6B/Eo F0 6B	61/F0 61
		E0 AA E0 4B/E0 CB E0 2A [4]	E0 F0 12 E0 6B/E0 F0 6B E0 12[5]	
		E0 2A E0 4B/E0 CB E0 AA [6]	E0 12 E0 6B/E0 F0 6B E0 F0 12[6]	
98		E0 50/E0 D0	E0 72/E0 F0 72	60/F0 60
		E0 AA E0 50/E0 D0 E0 2A [4]	E0 F0 12 E0 72/E0 F0 72 E0 12[5]	
		E0 2A E0 50/E0 D0 E0 AA [6]	E0 12 E0 72/E0 F0 72 E0 F0 12[6]	
99		E0 4D/E0 CD	E0 74/E0 F0 74	6A/F0 6A
		E0 AA E0 4D/E0 CD E0 2A [4]	E0 F0 12 E0 74/E0 F0 74 E0 12[5]	
		E0 2A E0 4D/E0 CD E0 AA [6]	E0 12 E0 74/E0 F0 74 E0 F0 12[6]	
100	0	52/D2 [6]	70/F0 70 [6]	70/na [6]
101		53/D3 [6]	71/F0 71 [6]	71/na [6]
102	na	7E/FE	6D/F0 6D	7B/F0 7B
103	na	2B/AB	5D/F0 5D	53/F0 53
104	na	36/D6	61/F0 61	13/F0 13
110	(Win95)	E0 5B/E0 DB	E0 1F/E0 F0 1F	8B/F0 8B
	[7]	E0 AA E0 5B/E0 DB E0 2A [4]	E0 F0 12 E0 1F/E0 F0 1F E0 12 [5]	
444	() () () () ()	E0 2A E0 5B/E0 DB E0 AA [6]	E0 12 E0 1F/E0 F0 1F E0 F0 12 [6]	00/50 00
111	(Win95)	E0 5C/E0 DC	E0 2F/E0 F0 27	8C/F0 8C
	[7]	E0 AA E0 5C/E0 DC E0 2A [4]	E0 F0 12 E0 27/E0 F0 27 E0 12 [5]	
112	AMin	E0 2A E0 5C/E0 DC E0 AA [6] E0 5D/E0 DD	E0 12 E0 27/E0 F0 27 E0 F0 12 [6] E0 2F/E0 F0 2F	0D/E0 0D
112	(Win			8D/F0 8D
	Apps)	E0 AA E0 5D/E0 DD E0 AA [6]	E0 F0 12 E0 2F/E0 F0 2F E0 12 [5]	
	[7]	E0 2A E0 5D E0 DD E0 AA [6]	E0 12 E0 2F/E0 F0 2F E0 F0 12 [6	

Continued

([x] Notes listed at end of table.)

Table C-2. Keyboard Scan Codes (Continued)

Key		Mal	ke / Break Codes (Hex)	
Pos.	Legend	Mode 1	Mode 2	Mode 3
Btn 1	[8]	E0 1E/E0 9E	E0 1C/E0 F0 1C	95/F0 95
Btn 2	[8]	E0 26/E0 A6	E0 4B/E0 F0 4B	9C/F0 9C
Btn 3	[8]	E0 25/E0 A5	E0 42/E0 F0 42	9D/F0 9D
Btn 4	[8]	E0 23/E0 A3	E0 33/E0 F0 33	9A/F0 9A
Btn 5	[8]	E0 21/E0 A1	E0 2B/E0 F0 2B	99/F0 99
Btn 6	[8]	E0 12/E0 92	E0 24/E0 F0 24	96/F0 96
Btn 7	[8]	E0 32/E0 B2	E0 3A/E0 F0 3A	97/F0 97
Btn 1	[9]	E0 23/E0 A3	E0 33/E0 F0 33	9A/F0 9A
Btn 2	[9]	E0 1F/E0 9F	E0 1B/E0 F0 1B	80/F0 80
Btn 3	[9]	E0 1A/E0 9A	E0 54/E0 F0 54	99/F0 99
Btn 4	[9]	E0 1E/E0 9E	E0 1C/E0 F0 1C	95/F0 95
Btn 5	[9]	E0 13/E0 93	E0 2D/E0 F0 2D	0C/F0 0C
Btn 6	[9]	E0 14/E0 94	E0 2C/E0 F0 2C	9D/F0 9D
Btn 7	[9]	E0 15/E0 95	E0 35/E0 F0 35	96/F0 96
Btn 8	[9]	E0 1B/E0 9B	E0 5B/E0 F0 5B	97/F0 97

NOTES:

All codes assume Shift, Ctrl, and Alt keys inactive unless otherwise noted.

- NA = Not applicable
- [1] Shift (left) key active.
- [2] Ctrl key active.
- [3] Alt key active.
- [4] Left Shift key active. For active right Shift key, substitute AA/2A make/break codes for B6/36

codes.

- [5] Left Shift key active. For active right Shift key, substitute F0 12/12 make/break codes for F0 59/59 codes.
- [6] Num Lock key active.

- [7] Windows keyboards only. [8] 7-Button Easy Access keyboard. [9] 8-Button Easy Access keyboard.

C.3 CONNECTORS

Two types of keyboard interfaces are used in Compaq systems: PS/2-type and USB-type. System units that provide a PS/2 connector will ship with a PS/2-type keyboard but may also support simultaneous connection of a USB keyboard. Systems that do not provide a PS/2 interface will ship with a USB keyboard. For a detailed description of the PS/2 and USB interfaces refer to chapter 5 "Input/Output" of this guide. The keyboard cable connectors and their pinouts are described in the following figures:

Pin	Function
1	Data
2	Not connected
3	Ground
4	+5 VDC
5	Clock
6	Not connected

Figure C–9. PS/2 Keyboard Cable Connector (Male)

Pin	Function
1	+5 VDC
2	Data (+)
3	Data (-)
4	Ground

Figure C-10. USB Keyboard Cable Connector (Male)

Appendix D COMPAQ/NVIDIA VANTA LT AGP GRAPHICS CARD

D.1 INTRODUCTION

• This appendix describes the Compaq/NVIDIA Vanta LT AGP Graphics Card used in the standard configuration on some models and also available as an option. This card (layout shown in the following figure) installs in a system's AGP slot. The Compaq/NVIDIA Vanta LT AGP Graphics card (P/N 192174-002) provides high 2D performance as well as 3D capabilities.

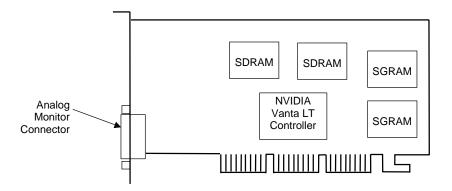


Figure D-1. Compaq/NVIDIA Vanta LT AGP Graphics Card (P/N 192174-002) Layout

This appendix covers the following subjects:

♦	Functional description (D.2)	page D-2
•	Display modes (D.3)	page D-3
•	Software support information (D.4)	page D-4
•	Monitor power management (D.5)	page D-4
•	Connectors (D.6)	page D-5

D.2 FUNCTIONAL DESCRIPTION

The Compaq/NVIDIA Vanta LT Graphics Card provides high performance 2D and 3D display imaging. The card's AGP design provides an economical approach to 3D processing by offloading 3D effects such as texturing, z-buffering and alpha blending to the system memory while 8 megabytes of on-board SDRAM stores the main display image.

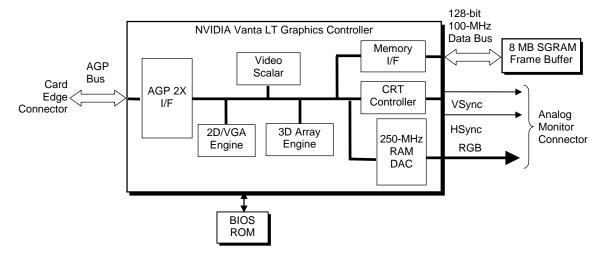


Figure D-2. Compaq/NVIDIA Vanta LT Graphics Card Block diagram

The Compaq/NVIDIA Vanta LT Pro Graphics Card includes the following features:

- ♦ 8-MB SDRAM frame buffer using 128-bit 100-MHz access
- AGP 2X transfers with sideband addressing
- ♦ 2D drawing engine providing:
 - 3 ROP BtBLT
 - Triangle BLT
 - Stretch BLT
 - Line and poly draw
 - Color expansion
 - Coor conversion and scaling
- 3D rendering engine with:
 - Triangle setup
 - Anistropic filtering
 - Flat and Gouraud shading
 - Trilinear filtering
 - TwinTexel engine
- 250-MHz RAMDAC
- ♦ 32-bit Z/stencil buffer eliminates hidden screen portions for faster loading
- ♦ 32-bit color for increased image quality
- ♦ 30-fps full-screen DVD playback
- ♦ Dual-monitor support with a PCI graphics card

D.3 DISPLAY MODES

The 2D graphics display modes supported by the Compaq/NVIDIA Vanta LT Graphics Card are listed in Table D-1.

Table D-1. NVIDIA Vanta LT Display Modes					
Resolution	Bits per pixel	Color Depth	Max. Refresh Frequency (Hz)		
640 x 480	8	256	85		
640 x 480	16	65K	85		
640 x 480	24	16.7M	85		
800 x 600	8	256	85		
800 x 600	16	65K	85		
800 x 600	24	16.7M	85		
1024 x 768	8	256	85		
1024 x 768	16	65K	85		
1024 x 768	24	16.7M	85		
1152 x 864	8	256	85		
1152 x 864	16	65K	85		
1152 x 864	24	16.7M	85		
1280 x 1024	8	256	85		
1280 x 1024	16	65K	85		
1280 x 1024	24	16.7M	85		
1600 x 1200	8	256	85		
1600 x 1200	16	65K	75		

D.4 SOFTWARE SUPPORT INFORMATION

The Compaq/NVIDIA Vanta LT Pro graphics card is fully compatible with software written for legacy video modes (VGA, EGA, CGA) and needs no driver support for those modes.

Drivers are provided with or available for the card to provide extended mode support for the current operating systems and programming environments such as:

- ♦ Windows 98, 95
- Windows NT 4.0, 3.51
- ♦ Windows 3.11, 3.1
- ◆ OS/2
- Quick Draw
- ♦ MS Direct Draw and Direct X
- ♦ Direct 3D
- ♦ OpenGL

D.5 POWER MANAGEMENT AND CONSUMPTION

This controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table I-2 lists the monitor power conditions.

Table D-2. Monitor Power Management Conditions					
HSYNC	VSYNC	Power Mode	Description		
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to tiemout, generates an SMI to initiate the Suspend mode.		
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.		
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.		

The graphics card's maximum power consumption on the AGP bus is listed below:

Typical current draw @ 3.3 VDC: 1.5 A Typical current draw @ 5.0 VDC: 50 mA

D.6 CONNECTORS

There is one connector associated with this graphics card; the monitor connector.

 \wedge

NOTE: The graphic card's edge connector mates with the AGP slot connector on the system board. This interface is described in chapter 4 of this guide.

The DB-15 disply/monitor connector is provided for connection of a compatible RGB/analog monitor. The Feature connector allows the attachment of an optional card such as a video tuner.

D.6.1 MONITOR CONNECTOR

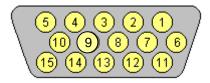
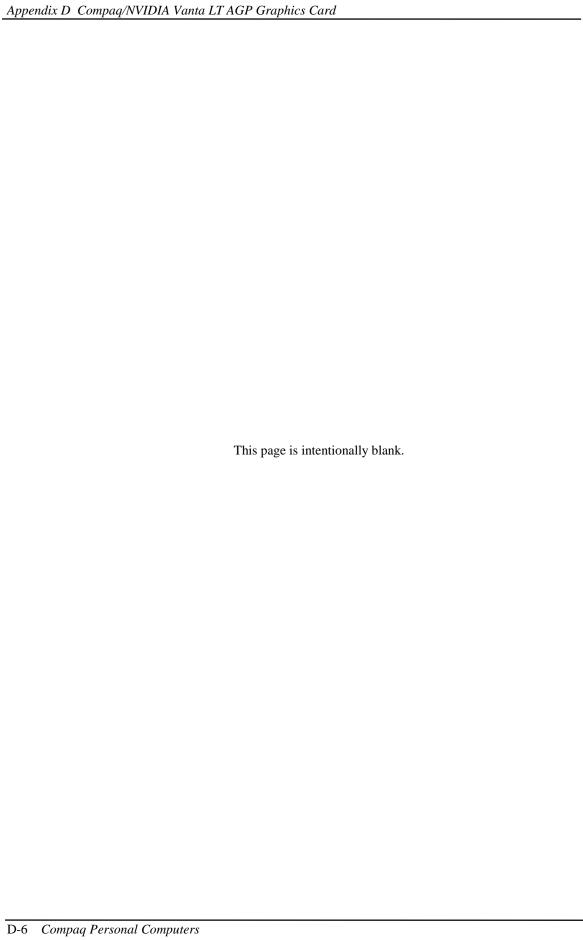
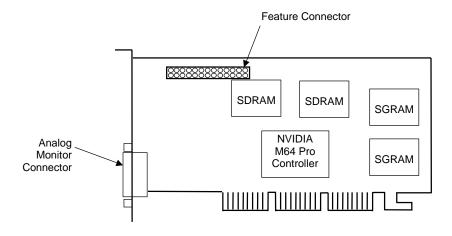



Figure D-3. VGA Monitor Connector, (Female DB-15, as viewed from rear).

	Table D-3. DB-15 Monitor Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description		
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]		
2	G	Blue Analog	10	GND	Ground		
3	В	Green Analog	11	NC	Not Connected		
4	NC	Not Connected	12	SDA	DDC2-B Data		
5	GND	Ground	13	HSync	Horizontal Sync		
6	R GND	Red Analog Ground	14	VSync	Vertical Sync		
7	G GND	Green Analog Ground	15	SCL	DDC2-B Člock		
8	B GND	Blue Analog Ground					

NOTES:

[1] Fuse automatically resets when excessive load is removed.



Appendix E COMPAQ/NVIDIA M64 GRAPHICS CARD

E.1 INTRODUCTION

This appendix describes the Compaq/NVIDIA M64 Graphics Card, which installs in an AGP slot and is provided standard in some model configurations and optional for other models. This card is available in 16- and 32-MB versions. This appendix covers the following subjects:

•	Functional description (E.2)	page E-2
♦	Display configurations (E.3)	page E-4
♦	Programming (E.4)	page E-5
♦	Power management (E.5)	page E-6
♦	Connectors (E.6)	page E-7

NOTES:

179250-002: Card with 16 MB SDRAM 179250-005: Card with 32 MB SDRAM

Figure E-1. Compaq/NVIDIA M64 AGP Graphics Card Layout (Compaq p/n 179250)

E.2 FUNCTIONAL DESCRIPTION

The Compaq/NVIDIA M64 AGP Graphics Card is based on the NVIDIA M64 PRO controller. This card supports 3D effects such as texturing, z-buffering and alpha blending. The graphics BIOS code is contained on-board in BIOS ROM.

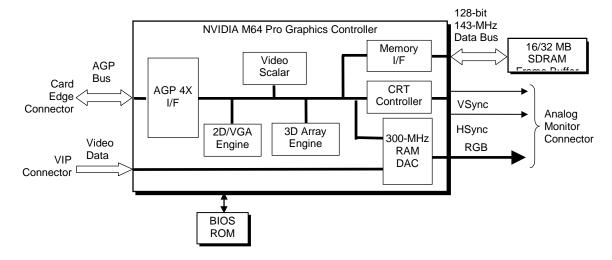


Figure E-2. Compaq/NVIDIA M64 AGP Graphics Card Block diagram

The card includes a VESA-compliant video feature (VIP) connector allowing a video peripheral to provide input to the DAC for overlaying a video image on the display. The video/graphics BIOS is contained in ROM on the card. The NVIDIA M64 graphics controller contains the features listed below:

- ♦ 16- or 32-MB SDRAM frame buffer using 128-bit 143-MHz access
- ♦ AGP 4X transfers with sideband addressing
- ♦ 2D drawing engine providing:
 - 3 ROP BtBLT
 - Triangle BLT
 - Stretch BLT
 - Line and poly draw
 - Color expansion
 - Coor conversion and scaling
- ♦ 3D rendering engine with:
 - Triangle setup
 - Anistropic filtering
 - Flat and Gouraud shading
 - Trilinear filtering
 - TwinTexel engine
- ♦ 300-MHz RAMDAC
- ♦ 32-bit Z/stencil buffer eliminates hidden screen portions for faster loading
- ♦ 32-bit color for increased image quality
- ♦ 30-fps full-screen DVD playback
- Dual-monitor support with a PCI graphics card

E.3 DISPLAY MODES

The 2D graphics modes supported by the Compaq/NVIDIA M64 AGP Graphics Card and its video BIOS are listed in Table E-1.

	Table	E-1.	
NVIDIA	M64 2D	Display	Modes

			Local Memory	
Resolution	Bits per pixel	Color Depth	Required	Max. Refresh Frequency (Hz)
640 x 480	8	256	16 or 32 MB	85
640 x 480	16	65K	16 or 32 MB	85
640 x 480	24	16.7M	16 or 32 MB	85
800 x 600	8	256	16 or 32 MB	85
800 x 600	16	65K	16 or 32 MB	85
800 x 600	24	16.7M	16 or 32 MB	85
1024 x 768	8	256	16 or 32 MB	85
1024 x 768	16	65K	16 or 32 MB	85
1024 x 768	24	16.7M	16 or 32 MB	85
1152 x 864	8	256	16 or 32 MB	85
1152 x 864	16	65K	16 or 32 MB	85
1152 x 864	24	16.7M	16 or 32 MB	85
1280 x 1024	8	256	16 or 32 MB	85
1280 x 1024	16	65K	16 or 32 MB	85
1280 x 1024	24	16.7M	16 or 32 MB	85
1600 x 1200	8	256	16 or 32 MB	75
1600 x 1200	16	65K	16 or 32 MB	75
1600 x 1200	24	16.7M	32 MB	75

E.4 SOFTWARE SUPPORT INFORMATION

The Compaq/NVIDIA M64 graphics card is fully compatible with software written for legacy video modes (VGA, EGA, CGA) and needs no driver support for those modes.

Drivers are provided with or available for the card to provide extended mode support for the current operating systems and programming environments such as:

- ♦ Accelerated drive support for Windows 3.x, Win95, and WinNT
- ♦ MS DirectDraw support for Win95, Win98, WinNT4.0/5.0 (DirectX 5/6/7)
- ♦ MS ActiveMovie support for Win95, Win98, WinNT5.0
- MPEG-1 software playback for Win95 and Win98
- ♦ MS Direct3D support for Win95, Win98, WinNT5.0
- ♦ OpenGL support for WinNT4.0/5.0
- ♦ Heidi support for WinNT
- ♦ ATI 3D CIF support for DOS

E.5 MONITOR CONTROL

This controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table E-5 lists the monitor power conditions.

Table E-5. Monitor Power Management Conditions				
HSYNC	VSYNC	Power Mode	Description	
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to tiemout, generates an SMI to initiate the Suspend mode.	
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.	
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.	

E.6 CONNECTORS

The ATI RAGE IIC graphics card contains two connectors: the monitor (display) connector for attaching a CRT display and a multimedia connector for attaching multimedia peripherals such a TV or other video cards.

E.6.2 MONITOR CONNECTOR

There are two connector types associated with the graphics subsystem; the display monitor connector and the graphics memory expansion connectors.

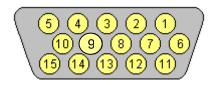


Figure E-3. VGA Monitor Connector, (Female DB-15, as viewed from rear).

Table E-6. DB-15 Monitor Connector Pinout							
Pin Signal Description Pin Signal Description							
1	R	Red Analog [1]	9	+5 VDC	+5 volts (fused)		
2	G	Blue Analog [1]	10	GND	Ground		
3	В	Green Analog [1]	11	Mon. ID	Monitor Identification		
4	Mon ID	Monitor Identification	12	SDA	DDC2-B Data		
5	GND	Ground	13	HSync	Horizontal Sync		
6	R GND	Red Analog Ground	14	VSync	Vertical Sync		
7	G GND	Blue Analog Ground	15	SCL	DDC2-B Clock		
8	B GND	Green Analog Ground					

E.6.3 VIDEO INTERFACE CONNECTOR

A video interface is provided through a 26-pin header that complies with the VESA standard feature (VSFC) connector VIP specification 1.1. This interface supports streaming of ITU-R Bt656 data (YCrCb 4:2:2 data) at up to 60 MB/s (i.e., using a 60 MHz clock).

Figure E-4 shows the video interface connector.

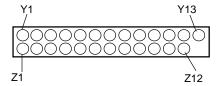
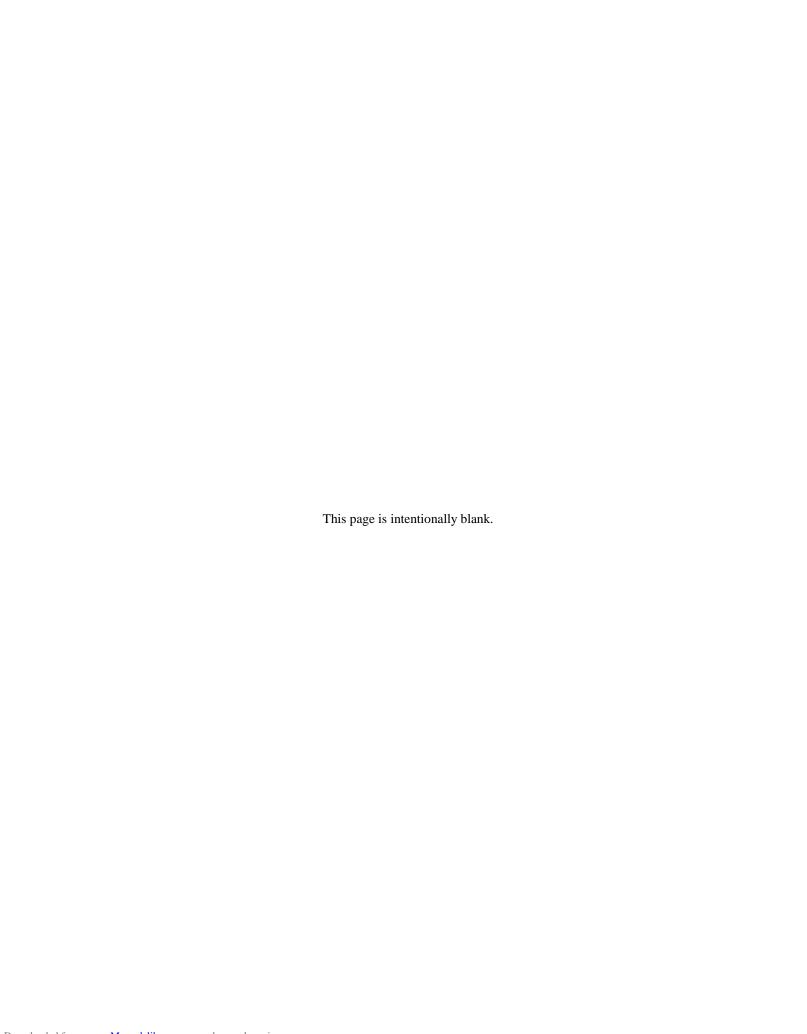


Figure E-4. Video Interface Connector (26-Pin Header)

Table E-7. Multimedia Interface Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description	
Z1	GND	Ground	Y1	P0	Pixel Data 0	
Z2	GND	Ground	Y2	P1	Pixel Data 1	
Z3	GND	Ground	Y3	P2	Pixel Data 2	
Z4	EVIDEO-	Overlay Enable	Y4	P3	Pixel Data 3	
Z5	ESYNC-	External Sync Enable	Y5	P4	Pixel Data 4	
Z6	EDCLK	External Clock Enable	Y6	P5	Pixel Data 5	
Z7	SDA	Serial Data	Y7	P6	Pixel Data 6	
Z8	GND	Ground	Y8	P7	Pixel Data 7	
Z9	GND	Ground	Y9	DCLK	Pixel Data Clock	
Z10	GND	Ground	Y10	BLANK	DAC Output Blanking	
Z11	GND	Ground	Y11	HSYNC	Horizontal Sync	
Z12	SCL	Serial Clock	Y12	VSYNC	Vertical Sync	
Z13		KEY	Y13	GND	Ground	


INDEX

3D effects D-2	IDE interface	5-3
abbreviations 1-3	IDE/diskette drive power	7-5
AC97 link bus 5-26	keyboard/pointing device interfa	
Accelerated Graphics Port (AGP) 4-10	Multimedia Interface	
acronyms1-3	parallel interface	5-13
AGP4-10	PCI bus	4-9
Alert-On-LAN 5-30	serial interface (RS-232)	5-8
AOL5-30	Universal Serial Bus interface	
AOL requirements 5-31, 5-33	cooling	4-36, 4-37
APIC4-16	core voltage	
APM BIOS support 8-19	DIMM	
arbitration, PCI bus master 4-6	DIMM detection	8-5
ASCII character setB-1	DIMM support	8-15
audio5-24	diskette drive interface	5-4
audio controller (AC97) 5-26	display modes	D-3
audio subsystem2-17	display modes, 815E-based	6-4
backplane2-7	DMA	
battery replacement4-23	DMI	8-16
BIOS, ROM 8-1	drive fault prediction	8-15
blinking LED7-3	East Access keys	C-10
boot block ROM 8-2	Easy Access keyboards	C-7
cable lock4-34	effects, 3D	
CAS latency	EIDE interface	5-1
Celeron processor2-12, 2-13, 3-2	Enhanced Parallel Port (EPP)	5-11
chipsets 2-14	events, wake up	7-4
Client Management 8-12	expansion card cage	2-7
CMOS4-23	Extended Capabilities Port (ECP) .	5-11
CMOS, archive4-24	FC-PGA370 (package)	3-4
CMOS, clearing	features, standard	2-2
CMOS, restoring4-24	flash ROM	8-2
codec, audio5-27	flip-chip package	3-4
Configuration Cycle4-4	general purpose I/O	4-39
configuration cycle (PCI) 4-4	GPIO	.3-2, 3-3, 4-39
configuration memory4-23	I/O controller	4-41
configuration space (PCI)4-5	graphics card, NVIDIA M64	E-1
Connector	graphics card, NVIDIA Vanta LT.	D-1
AGP bus 4-14	graphics subsystem	2-16, 6-1
Audio, CD5-25	graphics, 3D	D-2
audio, headphones out 5-24	graphics, 815E-based	6-2
audio, line in 5-24	Hard drive activity indicator	4-42
audio, line out 5-24	Hub link bus	
Audio, Mic In 5-24	I/O controller (LPC47B34x)	4-40
Audio, Speaker 5-25	I/O map	
diskette drive interface5-7	IDE interface	5-1
display (VGA monitor)6-6, D-5, 5	IDSEL	4-4

index addressing	1-2	Plug 'n Play BIOS function	8-15
interface		power button	7-3
audio	2-17, 5-24	Power Button Override	4-24
diskette drive	5-4	power consumption, graphics card	D-4
IDE	5-1	power distribution	
keyboard/pointing device	5-14	Power indicator	4-42
parallel	2-15, 5-10	power management	
serial	2-15, 5-8	ACPI	4-35
USB	2-15, 5-20	PCI	4-7
interrupts		power management BIOS function	8-17
maskable (IRQn)	4-15	power supply	
nonmaskable (NMI, SMI)		power supply assembly	
interrupts, PCI		power-on password	
key (keyboard) functions		PPGA370	
keyboard		processor	
keyboard (micro)processor		Celeron	2-13, 3-2
keyboard layouts		Pentium III	
keyboard, USB		processor upgrading	,
keyboards, Easy Access		processor, Celeron	
keys, Easy Access		processor, Pentium II	
keys, Windows		programming 815E-based graphics	
LED indications		RAM	
LED, HD		reference sources	
LED, Power		remote flashing	
low voltages		remote sense alert	
LPC bus		restoring CMOS	
LPC47B357 I/O controller		ROM BIOS	
mass storage		ROM flashing	
memory detection		ROM, option	
memory map		RS-232	
memory, system		RTC	
memory, system (RAM)		scan codes (keyboard)	
microphone		SDRAM	
MMX		security functions	
monitor power control		security, interface	
mouse interface		sensor, thermal	
Multimedia interface connector		serial interface	
network interface controller		SDRAM	
network support		sideband addressing	
NIC		signal distribution	
notational conventions		SIMD	
NUM lock		SMBIOS	
option ROM		SMI	4-18
options		specifications	
parallel interface		electrical	
password, clearing		environmental	
password, power-on		physical	
PCI bus		power supply	7-9
PCI Configuration Space		Specifications	2 4 4
PCI interrupts		8x CD-ROM Drive	
Pentium II		Audio subsystem	
Pentium II processor		Diskette Drive	
Pentium III processor	3-3	Hard Drive	
PHY		specifications, system	
Plug 'n Play2-2	2, 2-15, 8-15	SSE	3-3

status, LED	4-35
system board	2-9
system ID	8-6, 8-14
system memory	2-15, 3-5
system resources	4-15
system ROM	8-1
system status indications	4-35
TAFI	4-37
temperature status	8-15
thermal sensing	
typematic	C-8
UART	5-8
Universal Serial Bus (USB) interface.	5-20
upgrading 815-based graphics	6-6

upgrading, BIOS	8-2
upgrading, processor	3-4
USB interface	5-20
USB keyboard	
USB legacy support	
USB ports	2-15
voltage, core	
wake up (power)	7-4
wake up events	7-4
Wake-On-LAN	7-4
Windows keys	
WOL	
ZIF socket	2-13

